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Mécanique classique et mécanique quantique

La mécanique quantique est une généralisation de la mécanique classique nécessaire afin

de rendre compte des phénomènes physiques à l’échelle microscopique. Dans la première

section de ce chapitre, on va introduire historiquement et conceptuellement la mécanique

quantique. La deuxième section est consacrée au fondements de la mécanique quantique. La

troisième section traitera de la chimie quantique. Finalement, dans la quatrième section, on

discutera de l’information quantique.

14.1 Introduction historique à la mécanique quantique

14.1.1 Loi de Planck et effet photoélectrique

Je vous propose de commencer par une introduction historique à la mécanique quantique

qui débute au tournant du XXe siècle. En 1900, le célèbre physicien allemand Max Planck

introduit la constante fondamentale h qui porte son nom afin de décrire avec succès le

rayonnement du corps noir. Un corps noir est un objet idéal qui absorbe parfaitement tout

le rayonnement qu’il reçoit. Cette absorption donne lieu à une agitation thermique qui

provoque l’émission d’un rayonnement déterminé par la température T du corps noir.

Planck a trouvé mathématiquement la loi qui interpole les lois de Rayleigh-Jeans et

de Wien décrivant la densité d’énergie interne uν du rayonnement d’un corps noir de

température T pour de basses et de hautes fréquences ν respectivement (Fig. 14.1),
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et hν ≫ kBT (loi de Wien)

où c est la vitesse de propagation de la lumière dans le vide et kB est la constante de Boltz-

mann. Initialement, Planck cherchait à faire tendre sa constante h vers 0 pour retrouver un

comportement classique, sans succès. . . Cette constante lui a valu le prix Nobel de physique

en 1918. On peut citer comme exemple de corps noir les étoiles, les lampes à incandescence

ou l’univers après le Big Bang. Le rayonnement cosmologique est le meilleur exemple connu

de rayonnement de corps noir.

En 1905, Albert Einstein s’est inspiré de cette formule et a postulé que l’énergie du

rayonnement E ne prenait que des valeurs discrètes et qu’elle était proportionnelle à la

fréquence v des ondes électromagnétiques,

Albert Einstein
E = hν (14.2)

Il a reçu le prix Nobel de physique en 1921 pour cette découverte de l’effet photoélectrique.

https://fr.wikipedia.org/wiki/Max_Planck
https://fr.wikipedia.org/wiki/Albert_Einstein
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Figure 14.1 La loi de Planck interpole la loi de Rayleigh-Jeans à basses fréquences, c’est-
à-dire hν ≪ kBT , et la loi de Wien à hautes fréquences, c’est-à-dire hν ≫ kBT .

14.1.2 Modèle atomique de Bohr-Sommerfeld

En 1909, Ernest Rutherford réalise au Cavendish Laboratory de l’université de Cambridge

une célèbre expérience où il bombarde une feuille d’or ultra fine de particules α, qui sont des

noyaux d’ 4He. Pour la découverte de ces particules, il a reçu le prix Nobel de chimie en 1908.

En observant que les particules α ne sont quasiment pas déviées par la feuille, il en déduit

que les atomes sont constituées quasiment entièrement de vide. Cette expérience invalide le

modèle du “pain aux raisins”de son directeur de Laboratoire, J.J. Thomson, le physicien qui

a découvert l’électron (Fig. 14.2). Rutherford propose en 1911 un nouveau modèle nucléaire

de l’atome où les électrons se déplacent autour d’un noyau formé de protons sous l’effet de

la force électrique attractive exercée par le noyau (Fig. 14.2).

Figure 14.2 Modèle atomique monolithique de Dalton (1803), modèle atomique du
“pain aux raisins” de Thomson (1904), modèle atomique nucléaire de Rutherford (1911),
modèle atomique en orbites quantifiées de Bohr (1913) et modèle atomique en orbitales de
Schrödinger (1926).

Ernest Rutherford

J.J. Thomson

Ce modèle a un défaut majeur : les observations des spectres d’émission des atomes

révèlent que le rayonnement émis par les atomes a un spectre discret, c’est-à-dire que

la fréquence de ce rayonnement ne prend que des valeurs discrètes caractéristiques pour

chaque type d’atome. Pour remédier à ce problème, le physicien Niels Bohr, qui avait été

postdoctorant dans le laboratoire de Thomson à Cambridge et était postdoctorant dans le

laboratoire de Rutherford à Manchester, propose d’améliorer le modèle de Rutherford en

postulant que l’énergie des électrons sur les orbites ne peut prendre que des valeurs discrètes

ou quantifiées En où n ∈ N (Fig. 14.2). Lorsque qu’un électron effectue une transition d’une

orbite d’énergie En2
vers une orbite d’énergie En1

plus faible, il émet ainsi un quantum de

rayonnement électromagnétique, surnommé photon de fréquence spécifique ν d’après l’effet

photoélectrique (14.2) d’Einstein (Fig. 14.3),

En2
− En1

= hν où n2 > n1 (14.3)

L’atome d’hydrogène est un système à deux corps : le noyau constitué du proton et l’électron.

https://fr.wikipedia.org/wiki/Ernest_Rutherford
https://fr.wikipedia.org/wiki/J._J._Thomson
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Figure 14.3 Dans le modèle de Bohr, la transition d’un électron d’une orbite d’énergie
En2 , où n2 ∈ {3, 4, 5}, vers une autre orbite d’énergie de plus faible En1 , où n1 = 2, donne
lieu à l’émission d’un photon de fréquence caractéristique ν.

Etant donné que la masse du proton mp est trois ordres de grandeur supérieure à la masse

de l’électron me, la masse réduite µ de l’atome d’hydrogène est quasiment celle de l’électron,

mp

me
= 1836.15 ainsi µ =

mpme

mp +me
≃ me (14.4)

Le mouvement réduit de l’atome d’hydrogène est donc celui de l’électron autour du

Niels Bohr

proton qu’on peut dorénavant considérer comme fixe. L’énergie potentielle d’interaction

électrostatique entre l’électron et le proton est le potentiel électrique de Coulomb,

VC =
1

4π ε0

qp qe
r

= − 1

4πε0

e2

r
(14.5)

où qe = e < 0 est la charge électrique de l’électron, qp = − e > 0 est la charge électrique du

proton et ε0 est la permittivité électrique du vide. L’énergie potentielle de Coulomb (14.5)

a une structure analogue à l’énergie potentielle gravitationnelle (9.53). En remplaçant les

masses par les charges et la constante de la gravitation G par − 1/4π ε0 dans l’énergie po-

tentielle gravitationnelle VG, on obtient l’énergie potentielle de Coulomb. Ainsi, par analogie

avec l’énergie mécanique du mouvement gravitationnel (9.51), l’énergie de l’électron dans

l’atome d’hydrogène s’écrit,

E =
1

2
me v

2 + VC =
1

2
me v

2 − 1

4πε0

e2

r
(14.6)

La force électrique de Coulomb exercée par le proton sur l’électron a la forme suivante,

FC =
1

4πε0

qp qe
r2

r̂ = − 1

4πε0

e2

r2
r̂ (14.7)

où r̂ est le vecteur radial unitaire orienté du proton vers l’électron. La force de Coulomb

FC a une structure analogue à la force de la gravitation universelle FG où les masses

ont été remplacées par les charges et la constante de la gravitation G par − 1/4π ε0. Pour

un électron, qui se déplace sur une orbite circulaire de rayon r à vitesse v et subit une

accélération centripète ac due à la force de Coulomb FC exercée par le noyau, la loi du

mouvement s’écrit,

FC = me ac = −me
v2

r
r̂ (14.8)

En identifiant les forces de Coulomb dans les équations (14.7) et (14.8), on obtient l’équation

scalaire du mouvement de l’électron,

me
v2

r
=

1

4πε0

e2

r2
(14.9)

Dans le modèle atomique de Bohr, l’énergie quantifiée (14.158) de l’électron sur la ne orbite

s’écrit,

En =
1

2
me v

2
n − 1

4πε0

e2

rn
(14.10)

https://fr.wikipedia.org/wiki/Niels_Bohr


192 CHAPITRE 14. MÉCANIQUE QUANTIQUE

où vn est la vitesse de l’électron et rn est le rayon de cette orbite circulaire. Dans ce modèle,

l’équation quantifiée du mouvement de l’électron (14.9) s’écrit,

me
v2n
rn

=
1

4πε0

e2

r2n
(14.11)

Bohr quantifie le moment cinétique de l’électron Ln sur une orbite circulaire en termes des

coordonnées de position rn et de quantité de mouvement pn,

Ln = rn pn = me vn rn = n ℏ (14.12)

où ℏ = h/2π est la constante de Planck réduite. En 1916, la condition de quantifica-

Arnold Sommerfeld

tion (14.12) du moment cinétique de Bohr est généralisée par Arnold Sommerfeld au cas des

orbites elliptiques. Les équations quantifiées (14.10), (14.10) et (14.12) de Bohr-Sommerfeld

forment un système de trois équations à trois inconnues, à savoir rn, vn et En. Les solutions

de ce système sont les suivantes,

rn = n2 a0 = n2
(
4πε0 ℏ2

mee2

)
vn =

α c

n
=

1

4πε0

e2

n ℏ

En = − EI
n2

= − α2mec
2

2n2
= − mee

4

32π2ε20 ℏ2n2

(14.13)

où c est la vitesse de propagation de la lumière dans le vide, α est la constante de structure

fine de Sommerfeld,

α =
1

4πε0

e2

ℏ c
≃ 1

137
(14.14)

a0 est le rayon atomique de Bohr,

a0 =
ℏ

αme c
=

4πϵ0ℏ2

mee2
= 0.52 Å (14.15)

et EI est l’énergie d’ionisation de l’électron,

EI = −E1 =
α2mec

2

2
=

mee
4

32π2ε20 ℏ2
= 13.6 eV (14.16)

qui est l’énergie nécessaire pour arracher un électron de l’orbite fondamentale. Bohr a reçu

le prix Nobel de physique en 1922 pour son modèle, une année après Albert Einstein. Ce

modèle prédit correctement les longueurs d’onde des lignes d’émission spectrale. Compte

tenu des niveaux d’énergie (14.13) pour des photons de vitesse c et de fréquence ν,

ν =
c

λ
(14.17)

où λ est la longueur d’onde, la formule de Bohr (14.3) donnant l’énergie hν d’un photon

émis lors d’une transition d’un électron d’une orbite d’énergie En2
vers une orbite d’énergie

En1 s’écrit,

Johannes Rydberg
En2

− En1
= −EI

(
1

n22
− 1

n21

)
=
α

2
mec

2

(
1

n21
− 1

n22

)
=
hc

λ
(14.18)

On en déduit la formule de Rydberg,

1

λ
= RH

(
1

n21
− 1

n22

)
(14.19)

où la constante de Rydberg est,

RH =
αmec

2h
=

mee
4

8 ε20h
3c

= 1.097 · 107 m−1 (14.20)

Compte tenu de l’inégalité n2 > n1, la formule de Rydberg (14.19) donne la série de raies

d’émission de Lyman pour n1 = 1. Elle rend compte de la série de Balmer pour n1 = 2. La

formule de Rydberg prédit la série de Paschen pour n1 = 3. Elle rend compte de la série

https://fr.wikipedia.org/wiki/Arnold_Sommerfeld
https://fr.wikipedia.org/wiki/Johannes_Rydberg
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Figure 14.4 Series de raies d’émission de Lyman n1 = 1, de Balmer n1 = 2, de Paschen
n1 = 3, de Brackett n1 = 4 et de Pfund n1 = 5.

de Brackett pour n1 = 4. La formule de Rydberg donne la série de Pfund pour n1 = 5

(Fig. 14.4).

Le modèle de Bohr a un défaut majeur : d’après les lois de l’électromagnétisme, toute parti-

cule chargée qui subit une accélération donne lieu à un rayonnement. C’est le cas des électrons

chargés négativement qui subissent une accélération centripète due à la force électrique at-

tractive générée par leur interaction avec le noyau chargé positivement. Ce rayonnement

conduit à une perte d’énergie et les électrons devraient alors suivre une trajectoire spirale

avant d’entrer en collision avec le noyau. Pour l’atome d’hydrogène H constitué d’un électron

et d’un proton, ce temps de vol est d’environ 10−11 s (Fig. 14.5).

Figure 14.5 Dans le modèle de Rutherford, pour l’atome d’hydrogène, un électron perd
de l’énergie par rayonnement dû l’accélération centripète de son mouvement orbital ce qui
donne lieu à une trajectoire spirale où l’électron entre en collision avec le proton après
environ 10−11 s.

Comme les atomes d’hydrogène H sont stables depuis la nucléosynthèse primordiale qui a

suivi le Big Bang, force est de constater que cela n’est pas le cas ! Il faudra donc abandonner

le notion de trajectoire comme le dit si pertinemment Werner Heisenberg : “Le concept de

trajectoire est importé de la physique classique. Il convient de l’abandonner en physique

quantique.” En créant son modèle de l’atome, Bohr a cherché à décrire la physique ato-

mique en termes des grandeurs accessibles à l’observation, c’est-à-dire les fréquences des

raies d’émission. Cette recherche des “observables” a donné lieu à la mécanique quantique.

Les deux acteurs majeurs de cette révolution sont le physicien allemand Werner Heisen-

berg et le physicien autrichien Erwin Schrödinger qui ont suivi des chemins complètement

différents. Ils on tous les deux élaborés des théories afin de rendre compte des énergies

quantifiées du modèle de Bohr-Sommerfeld.
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14.1.3 Mécanique matricielle

A l’âge de 23 ans, le jeune Werner Heisenberg s’est rendu en cure pour le traitement de

son asthme sur l’̂ıle de Helgoland dans le mer du Nord. Sur cette ı̂le déserte, il a laissé libre

court à ses réflexions sur le modèle atomique de Bohr. Dans un trait de génie, il a réalisé

qu’il pouvait modéliser les raies spectrales d’émission des atomes de manière matricielle.

En effet, en numérotant les orbites atomiques, les émissions de photons peuvent alors être

décrits à l’aide d’une matrice où l’indice de ligne se réfère à l’orbite initiale et l’indice de

colonne à l’orbite finale. Werner Heisenberg, Max Born et Pascual Jordan, se sont alors rendu

compte que pour décrire la physique atomique, il fallait remplacer les grandeurs usuelles

de la physique classique par des matrices. C’est ainsi qu’est née la mécanique matricielle.

Cette mécanique est non commutative par construction. En effet, si les espaces propres de

matrices sont différents, les matrices ne commutent pas. Heisenberg a montré que ceci est

en particulier le cas pour les matrices associées à la position et à la quantité de mouvement.

La non-commutation des coordonnées de position ri et de quantité de mouvement pj donne

lieu aux relations de commutation canonique,

Werner Heisenberg

Helgoland

[ri, pj ] = ri pj − pj ri = i ℏ δij (14.21)

où i est le nombre imaginaire. En appliquant l’inégalité de Cauchy-Schwarz aux écarts-type

∆ri = ri− ⟨ri⟩ et ∆pi = pj − ⟨pj⟩, Heisenberg lie les variances des coordonnées de position

et de quantité de mouvement aux relations de commutation canonique (14.21),

(∆ri)
2
(∆pj)

2 ⩾
1

4
|⟨[ri, pj ]⟩|2 (14.22)

Ainsi, il a obtenu les relations d’inégalité ou le principe d’incertitude,

∆ri∆pj ⩾
ℏ
2
δij (14.23)

qui portent son nom et affirment qu’il y a une incompatibilité de mesure entre les compo-

santes de la position et celles de la quantité de mouvement. Cette incompatibilité se traduit

par des incertitudes ∆ri et ∆pj sur les mesures simultanées des composantes de la position

ri et de la quantité de mouvement pj .

14.1.4 Mécanique ondulatoire

Erwin Schrödinger, a été fortement influencé par la thèse de Louis de Broglie qui étudié

le comportement ondulatoire de l’électron et lui a attribué une longueur d’onde. Ce travail

a valu à Louis de Broglie d’être le lauréat du prix Nobel de physique en 1929. Schrödinger

était persuadé qu’il fallait trouver une équation qui régisse le comportement ondulatoire de

l’électron afin d’expliquer les niveaux quantifiés du modèle de Bohr. Durant l’hiver 1925,

alors qu’il était professeur de l’ETH de Zurich, il s’est rendu en vacances de neige avec l’une

de ses mâıtresses à Arosa dans les alpes grisonnes. Les abondantes chutes de neige l’ont

contraint à rester au chaud dans son chalet. . .C’est alors qu’il a appliqué le formalisme de

la mécanique analytique pour en déduire la très célèbre équation qui décrit la dynamique

d’un électron et porte son nom. En mécanique analytique, l’hamiltonien H est la somme

de l’énergie cinétique T et de l’énergie potentielle totale V alors que le lagrangien L est la

différence de ces énergies,

Louis de Broglie H = T + V et L = T − V (14.24)

L’action S est définie comme l’intégrale du lagrangien par rapport au temps,

S =

∫
Ldt (14.25)

L’action a donc la même unité physique que le moment cinétique. Le formalisme de Hamilton-

Jacobi permet de lier la dérivée temporelle de l’action à l’hamiltonien H,

− ∂S

∂t
= H (14.26)

https://fr.wikipedia.org/wiki/Werner_Heisenberg
https://fr.wikipedia.org/wiki/Helgoland
https://fr.wikipedia.org/wiki/Louis_de_Broglie
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c’est l’équation d’Hamilton-Jacobi qui décrit l’évolution d’un système. Pour retrouver les

niveaux d’énergies du modèle de Bohr, l’idée géniale de Schrödinger a été de décrire le

comportement de l’électron par une fonction d’onde,

ψ = ψ0 exp (− i φ) = ψ0 e
− i

ℏ S ∈ C (14.27)

où ψ0 = cste, en termes de son action qui est un multiple quantifié de sa phase,

S = ℏφ (14.28)

En inversant la fonction d’onde (14.27), Schrödinger a décrit l’action comme,

S = i ℏ ln

(
ψ

ψ0

)
(14.29)

En substituant l’action (14.28) dans l’équation d’Hamilton-Jacobi (14.26), il a obtenu le

résultat suivant,

− i ℏ
ψ0

ψ

∂

∂t

(
ψ

ψ0

)
= H (14.30)

qui multiplié par la fonction d’onde ψ donne l’équation qui porte son nom,

Erwin Schrödinger− i ℏ
∂ ψ

∂t
= H ψ (14.31)

Schrödinger étudie les solutions de cette équations et en extrait les énergies quantifiées du

modèle de Bohr : impressionnant ! La mécanique ondulatoire de Schrödinger parâıt tellement

plus simple que la mécanique matricielle d’Heisenberg ! Pourtant, ces deux théories qui

prédisent les mêmes valeurs sont complémentaires. Heisenberg recevra le prix Nobel de

physique en 1932 et il sera décerné à Schrödinger en 1933.

14.2 Fondements de la mécanique quantique

La mécanique matricielle et la mécanique ondulatoire sont comme les deux faces d’une

mécanique plus générale appelée la mécanique quantique. Schrödinger et Dirac ont montré

indépendamment cette équivalence et le grand mathématicien hongrois John von Neumann

a proprement formalisé cette théorie sur le plan mathématique. L’équivalence entre ces

théories peut se comprendre de la manière suivante : Les matrices d’Heisenberg sont des

représentations d’applications linéaires par rapport à une base d’un espace vectoriel abstrait.

Elles ont des valeurs propres et des vecteurs propres. De même, les opérateurs différentiels par

rapport au temps et à l’espace qui apparaissent dans l’équation détaillée de Schrödinger sont

une généralisation d’applications linéaires qui ont des valeurs propres et des vecteurs propres

dans un espace vectoriel abstrait de fonctions. Pour réconcilier les deux théories, il faut

donc décrire les grandeurs physiques, les observables, par des opérateurs différentiels Â qui

agissent sur des vecteurs caractérisant l’état du système. Ces vecteurs d’état, notés |ψ⟩, sont
les fonctions d’onde ψ. Ils appartiennent à un espace vectoriel de dimension infinie appelé

John von Neumann
l’espace de Hilbert H. Le spectre σ (Â) des opérateurs Â ∈ L (H), c’est-à-dire l’ensemble

de leurs valeurs propres, représente les valeurs discrètes ou continues que peut prendre

l’observable Â. Il s’agit par exemple des niveaux d’énergie En du modèle de Bohr où n ∈ N
de l’atome d’hydrogène pour l’observable hamiltonien Ĥ.

14.2.1 Espace d’Hilbert et vecteur d’état

En mécanique quantique, l’état d’un point matériel, comme un électron par exemple,

est décrit par la fonction d’onde ψ à valeurs complexes, appelée vecteur d’état et notée

|ψ⟩ : R3 → C. Les vecteurs d’état prennent comme argument tout point de l’espace à

trois dimensions et ils appartiennent à l’espace vectoriel de Hilbert des fonctions de carré

intégrable, c’est-à-dire |ψ⟩ ∈ H = L2
(
R3
)
, comme on le montrera ci-dessous. On peut

définir une base orthonormée continue (non-dénombrable) de vecteurs {|x, y, z⟩} de l’espace

vectoriel de fonctions R3 → H paramétrisée par des coordonnées cartésiennes. D’après le

https://fr.wikipedia.org/wiki/Erwin Schrödinger
https://fr.wikipedia.org/wiki/John_von_Neumann
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théorème de représentation de Fréchet-Riesz, une base orthonormée continue de vecteurs

notée {⟨x′, y′, z′|} peut alors être associée à l’espace vectoriel dual de fonctions H → R3. Le

produit scalaire des vecteurs de la base et de la base duale satisfait la relation d’orthonor-

malité,

⟨x′, y′, z′|x, y, z⟩ = δ (x′ − x) δ (y′ − y) δ (z′ − z) (14.32)

exprimée en fonction des distributions de Dirac sur les coordonnées définies comme,

δ (x′ − x) =

{
1 si x′ = x

0 si x′ ̸= x
et δ (y′ − y) =

{
1 si y′ = y

0 si y′ ̸= y

δ (z′ − z) =

{
1 si z′ = z

0 si z′ ̸= z

(14.33)

Dirac a appelé le vecteur |x, y, z⟩ un vecteur “ket” et son dual ⟨x, y, z| un vecteur “bra”. Le

Paul Dirac

David Hilbert

produit scalaire (14.32) est donc un “bra-ket”. Les vecteurs “bra” peuvent être considérés

comme des vecteurs lignes abstraits et les vecteurs “ket” comme des vecteurs colonnes

abstraits. Compte tenu des distributions (14.33), l’intégration de la relation d’orthonor-

malité (14.32) sur l’espace à trois dimensions est le carré de la norme du vecteur normé

|x, y, z⟩, ∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ⟨x′, y′, z′|x, y, z⟩ = ⟨x, y, z|x, y, z⟩ = 1 (14.34)

En permutant l’ordre des vecteurs “bra” et “ket” dans le produit scalaire (14.32), on obtient

un “ket-bra” qui est un projecteur dans l’espace de Hilbert H. La somme continue des

projecteurs est l’opérateur identité qui est le projecteur sur l’ensemble de l’espace de Hilbert,∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz |x, y, z⟩⟨x, y, z| = 1̂ (14.35)

La fonction d’onde complexe ψ (x, y, z) ∈ C évaluée au point (x, y, z) est la représentation

de position du vecteur d’état “ket” |ψ⟩,

ψ (x, y, z) = ⟨x, y, z|ψ⟩ (14.36)

et satisfait l’identité,

⟨ψ|x, y, z⟩ = ⟨x, y, z|ψ⟩∗ (14.37)

Le conjugué complexe de la fonction d’onde complexe ψ (x, y, z) ∈ C évaluée au point (x, y, z)

est la représentation de position du vecteur d’état “bra” ⟨ψ|,

ψ∗ (x, y, z) = ⟨x, y, z|ψ⟩∗ = ⟨ψ|x, y, z⟩ (14.38)

Compte tenu du projecteur identité (14.35), le vecteur d’état “ket” |ψ⟩ s’écrit,

|ψ⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz |x, y, z⟩⟨x, y, z|ψ⟩ (14.39)

A l’aide du produit scalaire (14.36), le vecteur d’état ket |ψ⟩ est une combinaison linéaire

continue des vecteurs “ket” propres |x, y, z⟩ de la base orthonormée continue,

|ψ⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ψ (x, y, z) |x, y, z⟩ (14.40)

Compte tenu du projecteur identité (14.35), le vecteur d’état “bra” ⟨ψ| s’écrit,

⟨ψ| =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ⟨ψ|x, y, z⟩⟨x, y, z| (14.41)

A l’aide du produit scalaire (14.36), le vecteur d’état “bra” ⟨ψ| est une combinaison linéaire

continue des vecteurs “bra” propres ⟨x, y, z| de la base orthonormée continue,

⟨ψ| =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ψ∗ (x, y, z) ⟨x, y, z| (14.42)

https://fr.wikipedia.org/wiki/Paul_Dirac
https://fr.wikipedia.org/wiki/David_Hilbert


14.2. FONDEMENTS DE LA MÉCANIQUE QUANTIQUE 197

Compte tenu des relations intégrales (14.40) et (14.42) et de la relation d’orthonorma-

lité (14.32), la norme au carré du vecteur d’état normé |ψ⟩ s’écrit,

∥ψ∥2 = ⟨ψ|ψ⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ψ∗ (x, y, z)ψ (x, y, z)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz |ψ (x, y, z) |2 = 1

(14.43)

ce qui montre que le vecteur d’état normé |ψ⟩ appartient à l’espace de HilbertH des fonctions

de carré sommable, c’est-à-dire |ψ⟩ ∈ H = L2
(
R3
)
.

14.2.2 Interprétation statistique de la mesure

La structure probabiliste du processus de mesure en mécanique quantique et l’in-

terprétation statistique qui en découlent sont l’oeuvre du physicien allemand Max Born

qui a reçu le prix Nobel de physique pour ses travaux en 1954. Afin de comprendre l’ori-

gine de cette interprétation statistique, on introduit une base discrète orthonormée infinie

(dénombrable) {|ϕi⟩}i⩾1 ∈ H de vecteurs “ket” propres associées à un opérateur linéaire

quelconque Â ∈ L (H) qui agit dans l’espace de Hilbert H des états. Cette opérateur corres-

pond à une observable quelconque qui décrit une grandeur physique en mécanique quantique.

L’équation aux valeurs propres pour l’opérateur Â est,

Â |ϕi⟩ = Ai |ϕi⟩ (14.44)

où Ai ∈ R sont les valeurs propres réelles de l’opérateur Â. L’ensemble des valeurs propres

Max Born
Ai de l’opérateur Â constituent son spectre,

σ(Â) = {A1, A2, A3, . . .} (14.45)

Comme les vecteurs de base |ϕi⟩ sont normés, le produit scalaire d’un vecteur avec son

conjugué complexe est le carré de sa norme qui vaut,

∥ϕi∥2 = ⟨ϕi|ϕi⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ϕ∗i (x, y, z)ϕi (x, y, z) = 1 (14.46)

La relation orthonormalité entre un vecteur propre “bra” et un vecteur propre “ket” s’écrit,

⟨ϕi|ϕj⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ϕ∗i (x, y, z)ϕj (x, y, z) = δij (14.47)

Un vecteur d’état quelconque |ψ⟩ ∈ H est une combinaison linéaire des vecteurs propres de

la base orthonormée,

|ψ⟩ =
∑
i⩾1

⟨ϕi|ψ⟩ |ϕi⟩ (14.48)

où le produit scalaire d’un deux vecteur “bra” et d’un vecteur “ket” ⟨ϕi|ψ⟩ ∈ C est un

nombre complexe,

⟨ϕi|ψ⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ϕ∗i (x, y, z)ψ (x, y, z) (14.49)

qui satisfait l’identité suivante,

⟨ψ|ϕi⟩ = ⟨ϕi|ψ⟩∗ (14.50)

A l’aide de l’équation aux valeurs propres (14.44) et de la combinaison linéaire (14.48), on

en déduit,

Â |ψ⟩ =
∑
i⩾1

⟨ϕi|ψ⟩ Â |ϕi⟩ =
∑
i⩾1

⟨ϕi|ψ⟩Ai |ϕi⟩ =
∑
i⩾1

Ai ⟨ϕi|ψ⟩ |ϕi⟩ (14.51)

Compte tenu du vecteur “ket” (14.40) du vecteur “bra” (14.42), la valeur moyenne réelle

d’une observable Â dans un état |ψ⟩ est la forme hermitienne H×H → R de l’opérateur Â

agissant sur le vecteur d’état |ψ⟩ qui s’écrit,

⟨Â⟩ψ = ⟨ψ| Â |ψ⟩ =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz ψ∗ (x, y, z) Â (x, y, z)ψ (x, y, z) (14.52)

https://fr.wikipedia.org/wiki/Max_Born
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A l’aide de l’équation aux valeurs propres (14.51) et de l’identité (14.50), la valeur

moyenne (14.52) de l’opérateur Â dans l’état |ψ⟩ devient,

⟨Â⟩ψ = ⟨ψ| Â |ψ⟩ =
∑
i⩾1

Ai ⟨ϕi|ψ⟩ ⟨ψ|ϕi⟩ =
∑
i⩾1

⟨ϕi|ψ⟩∗ ⟨ϕi|ψ⟩Ai =
∑
i⩾1

|⟨ϕi|ψ⟩|2Ai (14.53)

Compte tenu des conditions de normalisation (14.49) et (14.43) pour les vecteurs |ψ⟩ et ϕi⟩,
on déduit de l’inégalité de Cauchy-Schwarz que,

0 ⩽ |⟨ϕi|ψ⟩|2 ⩽ ∥ϕi∥2∥ψ∥2 = 1 (14.54)

De plus, compte tenu de la combinaison linéaire (14.48) et de l’identité (14.50), on en déduit

la propriété suivante,

∑
i⩾1

|⟨ϕi|ψ⟩|2 =
∑
i⩾1

⟨ϕi|ψ⟩∗ ⟨ϕi|ψ⟩ =
∑
i⩾1

⟨ϕi|ψ⟩ ⟨ψ|ϕi⟩ = ⟨ψ|

∑
i⩾1

⟨ϕi|ψ⟩ |ϕi⟩

 = ⟨ψ|ψ⟩ = 1

(14.55)

Sur le plan physique, lors d’une mesure, le système ne peut être observé que dans un état

propre |ϕi⟩ de la base orthonormée {|ϕi⟩}i⩾1. Les propriétés (14.54) et (14.55) de la norme au

carré du produit scalaire du vecteur |ψ⟩ avec le vecteur propre |ϕi⟩ permettent d’interpréter

ce résultat comme la probabilité pi (ψ) d’observer le système dans l’état propre |ϕi⟩ lors

d’une mesure s’il est initialement dans l’état |ψ⟩,

pi (ψ) = |⟨ϕi|ψ⟩|2 (14.56)

qui satisfait alors les deux propriétés,

0 ⩽ pi (ψ) ⩽ 1 et
∑
i⩽1

pi (ψ) = 1 (14.57)

Le processus de mesure est donc un processus irréversible décrit mathématiquement par une

projection d’un vecteur d’état |ψ⟩ sur un vecteur propre |ϕi⟩ dans l’espace de Hilbert H.

Cette projection de la fonction d’onde ψ s’appelle la réduction du paquet d’onde. Sur le

plan physique, l’irréversibilité du processus de mesure signifie qu’après la mesure, le système

se trouve dans l’état propre |ϕi⟩. Ainsi, si la même mesure est refaite une seconde fois, le

système sera alors observé dans l’état propre |ϕi⟩ avec une probabilité pi (ϕi) = 1.

La valeur moyenne réelle (14.53) d’une observable Â dans un état |ψ⟩ est son espérance

quantique qui s’interprète comme la somme des valeurs propres réelles Ai pondérées par les

probabilités (14.57),

⟨Â⟩ψ =
∑
i⩾1

pi (ψ)Ai (14.58)

L’équation aux valeurs propres (14.53) peut être mise sous la forme suivante,

Â |ψ⟩ = Â

∑
i⩾1

|ϕi⟩ ⟨ϕi|

 |ψ⟩ =

∑
i⩾1

Ai |ϕi⟩ ⟨ϕi|

 |ψ⟩ (14.59)

Le projecteur Pi ∈ L (H) sur le sous-espace propre de l’espace de Hilbert H engendré par le

vecteur propre |ϕi⟩ est défini comme,

Pi = |ϕi⟩ ⟨ϕi| (14.60)

Compte tenu de l’équation aux valeurs propres (14.53), on en déduit que la somme des

projecteurs est l’opérateur identité qui est un projecteur sur l’ensemble de l’espace de Hilbert

H, ∑
i⩾1

Pi =
∑
i⩾1

|ϕi⟩ ⟨ϕi| = 1̂ (14.61)

A l’aide du projecteur (14.60) et de l’équation aux valeurs propres (14.59), on obtient la

décomposition spectrale de l’opérateur Â dans l’espace de Hilbert H,

Â =
∑
i⩾1

Ai |ϕi⟩ ⟨ϕi| =
∑
i⩾1

Ai Pi (14.62)
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Compte tenu de l’identité (14.50) du produit scalaire, l’opérateur adjoint Â† à l’opérateur

Â est défini par la forme hermitienne,

⟨ϕ| Â |ψ⟩ ≡ ⟨ϕ| Â ψ⟩ = ⟨Â†ϕ|ψ⟩ = ⟨ψ| Â† ϕ⟩∗ ≡ ⟨ψ| Â† |ϕ⟩∗ (14.63)

où |ψ⟩ et |ϕ⟩ ∈ H. A l’aide de la décomposition (14.53) du vecteur |ψ⟩ dans la base or-

thonormée {|ϕi⟩}i⩾1 et de l’identité (14.50) du produit scalaire, la forme hermitienne de

l’opérateur Â devient,

⟨ϕ| Â |ψ⟩ =
∑
i⩾1

Ai ⟨ϕ|ϕi⟩⟨ϕi|ψ⟩ =

∑
i⩾1

A∗
i ⟨ψ|ϕi⟩⟨ϕi|ϕ⟩

∗

(14.64)

Par comparaison des formes hermitiennes (14.63) et (14.64), on en conclut que,

⟨ψ| Â† |ϕ⟩ =
∑
i⩾1

A∗
i ⟨ψ|ϕi⟩⟨ϕi|ϕ⟩ (14.65)

ce qui donne l’équation aux valeurs propres,

Â† |ϕ⟩ =
∑
i⩾1

A∗
i ⟨ϕi|ϕ⟩ |ϕi⟩ (14.66)

En comparant les équations aux valeurs propres (14.59) et (14.66), on en déduit que les

valeurs propres A∗
i de l’opérateur adjoint Â

† sont les conjugués complexes des valeurs propres

Ai de l’opérateur Â. La description des phénomènes physique impose que les valeurs propres

soient réelles,

Ai = A∗
i ∈ R ∀ i ⩾ 1 (14.67)

Par conséquent, les opérateurs qui décrivent des observables physiques sont hermitiens ou

autoadjoints,

Â = Â† ∈ L (H) (14.68)

Ainsi, la forme hermitienne (14.63) se réduit à,

⟨ϕ| Â |ψ⟩ = ⟨ψ| Â |ϕ⟩∗ (14.69)

14.2.3 Chat de Schrödinger

Les physiciens ont toujours entretenus des sentiments ambivalents envers les chats. Les

pionniers de l’électrostatique ont récupéré les peaux de leurs félins de compagnies préférés

afin de charger en électricité des baguettes par friction. Erwin Schrödinger ne fait pas excep-

tion à la règle puisqu’il a proposé en 1935 une expérience de pensée particulièrement cruelle

mettant en scène un chat. L’expérience que Schrödinger a proposée est la suivante : un chat

est enfermé dans un bôıte qui contient une source radioactive. Si un compteur Geiger détecte

un certain seuil critique de radiation, un dispositif mécanique active la chute d’un marteau

qui brise une fiole contenant du cyanure. Le cyanure se répand alors dans la bôıte et tue

Chat de Schrödinger

instantanément le chat. La probabilité que la radiation émise par la source radioactive soit

suffisante pour atteindre ce seuil critique est de 0.5. La probabilité que le chat reste vivant

est donc égale à celle qu’il meurt, c’est-à-dire pvivant (chat) = pmort (chat) = 0.5. On peut le

comprendre de la manière suivante, le vecteur d’état normé du chat |chat⟩ est la combinaison

linéaire (14.48) des vecteurs états propres |vivant⟩ et |mort⟩ dans l’espace de Hilbert H du

chat,

|chat⟩ = 1√
2

(
|vivant⟩ ± |mort⟩

)
(14.70)

où la base orthonormée à deux états satisfait les relations d’orthonormalité,

⟨vivant|vivant⟩ = ⟨mort|mort⟩ = 1 et ⟨vivant|mort⟩ = ⟨mort|vivant⟩∗ = 0 (14.71)

https://fr.wikipedia.org/wiki/Chat_de_Schrödinger
https://fr.wikipedia.org/wiki/Chat_de_Schrödinger
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Compte tenu de la définition (14.57), lors du processus de mesure qui consiste à ouvrir la

bôıte, les probabilités que le chat soit trouvé dans un état |vivant⟩ ou un état |mort⟩ sont,

pvivant (chat) = |⟨vivant|chat⟩|2 =
1

2
|⟨vivant|vivant⟩ ± ⟨vivant|mort⟩|2 =

1

2

pmort (chat) = |⟨mort|chat⟩|2 =
1

2
|⟨mort|vivant⟩ ± ⟨mort|mort⟩|2 =

1

2

(14.72)

Après avoir effectué la mesure, c’est-à-dire après avoir vérifié l’état propre du chat en ouvrant

la bôıte, il se trouve dans l’état propre |vivant⟩ ou |mort⟩ avec certitude. Le processus

de mesure revient ici à examiner le chat pour voir dans quel état propre il se trouve. Ce

processus est irréversible. Une fois qu’on a obtenu l’information sur l’état du chat, on ne

peut pas revenir en arrière. Erwin Schrödinger était-il un psychopathe ? Clairement, non ! Il

cherchait à mettre en évidence d’une part les lacunes de l’interprétation de Copenhague de

la mécanique quantique, proposée par Bohr, Heisenberg et Born, et à illustrer d’autre part

le processus de mesure. Selon l’interprétation de Copenhague, le chat est à la fois vivant et

mort. Pourtant, en effectuant la mesure de l’état du chat, c’est-à-dire en ouvrant la bôıte,

on peut clairement observer que le chat est soit vivant, soit mort. Selon l’interprétation

relationnelle de la mécanique quantique, proposée par Carlo Rovelli en 1996 et popularisée

dans son ouvrage intitulé “Helgoland”, publié en 2020, le vecteur d’état du |chat⟩ encode

l’information sur l’histoire de l’interaction du chat avec son environnement. Le processus

de mesure qui est effectué en ouvrant la bôıte revient à actualiser cette information, ce qui

parâıt plus raisonnable...

Carlo Rovelli
Le concept d’information est clé en physique. Schrödinger l’avait bien saisi. Il avait aussi

bien compris que l’essentiel de l’information faisant la beauté et la richesse de l’existence

humaine échappe hélas au champ d’investigation de la science. Dans ouvrage intitulé “La

nature et les grecs” publié en 1954, il affirme la chose suivante : “Je suis stupéfait de découvrir

que notre vision scientifique du monde est vraiment déficiente. Elle nous donne beaucoup

d’informations précises, ordonne magnifiquement bien nos expériences du réel, mais reste

terriblement muette et tristement étrangère à nos coeurs et à tout ce qui compte réellement

pour nous. Elle ne peut ni nous renseigner sur le rouge ni sur le bleu, ni sur l’amer ni sur le

sucré, ni sur la douleur ni sur le plaisir. Elle ne connâıt rien de la beauté ou de la laideur, du

bien ou du mal, de Dieu ou de l’éternité. La science prétend parfois répondre à des questions

dans ces domaines, mais les réponses sont très souvent si stupides que nous ne sommes pas

enclins à les prendre au sérieux.”

14.2.4 Observables physiques

Afin de déterminer la structure des observables physiques, on commence par une équation

d’onde pour la fonction d’onde ψ (r, t) = ψ (x, y, z, t),

− 1

c2
∂2ψ (r, t)

∂t2
+∇2ψ (r, t) = 0 (14.73)

où l’opérateur scalaire lapalacien est le carré de l’opérateur vectoriel gradient,

∇2 = ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(14.74)

La solution complexe générale de l’équation d’onde (14.73) est la fonction d’onde,

ψ (r, t) = ψ0 e
i
ℏ (p·r−E t) ∈ C (14.75)

En substituant la solution générale (14.75) dans l’équation d’onde (14.73), on obtient la

relation suivante,

E2 − p2c2 = 0 (14.76)

qui décrit l’énergie d’une particule relativiste de masse nulle. Le rayonnement d’une onde

électromagnétique est constitué de photons qui sont des particules relativistes de masse

nulle. Par conséquent, la fonction d’onde (14.75) décrit l’état quantique des photons. Dans

https://fr.wikipedia.org/wiki/Carlo_Rovelli
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l’espace à trois dimensions à un temps donné, l’équation aux valeurs propres d’un opérateur

Â est,

Â ψ (r, t) = Aψ (r, t) (14.77)

où A ∈ R est la valeur propre de l’opérateur Â ∈ L (H) si la fonction d’onde ψ (r, t) ∈ C est

une fonction propre de cet opérateur. Pour des photons, la fonction d’onde générale devient

ψ (r, t) = ψ0 e
i(k·r−ω t) ∈ C (14.78)

où k est le vecteur d’onde du photon et ω est sa pulsation appelée aussi sa fréquence

angulaire. En substituant la solution particulière (14.78) dans l’équation d’onde (14.73), on

obtient la relation de dispersion,

ω2 − k2c2 = 0 (14.79)

14.2.5 Quantité de mouvement

La quantité de mouvement décrit une variation spatiale rectiligne, c’est-à-dire un mouve-

ment de translation dans l’espace. Afin de déterminer l’opérateur linéaire quantité de mou-

vement p̂ ∈ L (H), on fait donc agir l’opérateur de dérivée spatiale, c’est-à-dire le gradient,

sur la fonction d’onde générale (14.75),

∇ψ (r, t) =
i

ℏ
pψ0 e

i
ℏ (p·r−E t) =

i

ℏ
pψ (r, t) (14.80)

qui est remise en forme comme,

− i ℏ∇ψ (r, t) = pψ (r, t) (14.81)

L’équation aux valeurs propres (14.77) de l’opérateur vectoriel quantité de mouvement

s’écrit,

p̂ψ (r, t) = pψ (r, t) (14.82)

En comparant les équations aux valeurs propres (14.81) et (14.82) pour la quantité de

mouvement, on en déduit l’opérateur quantité de mouvement en mécanique quantique,

p̂ = − i ℏ∇ (14.83)

En appliquant l’opérateur quantité de mouvement (14.83) sur la fonction d’onde du pho-

ton (14.78), on obtient le résultat suivant,

p̂ψ (r, t) = − i ℏ∇
(
ψ0 e

i(k·r−ω t)
)
= ℏk

(
ψ0 e

i(k·r−ω t)
)
= ℏkψ (r, t) (14.84)

En comparant les équations aux valeurs propres (14.82) et (14.84) de l’opérateur quantité

de mouvement pour un photon, on en conclut que la quantité de mouvement d’un photon

est quantifiée,

p = ℏk (14.85)

14.2.6 Hamiltonien

L’énergie décrit une variation temporelle, c’est-à-dire une translation dans le temps. Afin

de déterminer l’opérateur linéaire hamiltonien Ĥ ∈ L (H) associé à l’énergie E, on fait donc

agir l’opérateur de dérivée temporelle, sur la fonction d’onde générale (14.75),

∂

∂t
ψ (r, t) = − i

ℏ
E ψ0 e

i
ℏ (p·r−E t) = − i

ℏ
E ψ (r, t) (14.86)

qui est remise en forme comme,

i ℏ
∂

∂t
ψ (r, t) = E ψ (r, t) (14.87)

L’équation aux valeurs propres (14.77) de l’opérateur scalaire hamiltonien s’écrit,

Ĥ ψ (r, t) = E ψ (r, t) (14.88)
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En comparant les équations aux valeurs propres (14.87) et (14.88) pour l’hamiltonien, on en

déduit l’opérateur hamiltonien en mécanique quantique,

Ĥ = i ℏ
∂

∂t
(14.89)

En appliquant l’opérateur hamiltonien (14.2.10) sur la fonction d’onde du photon (14.78),

on obtient le résultat suivant,

Ĥ ψ (r, t) = i ℏ
∂

∂t

(
ψ0 e

i(k·r−ω t)
)
= ℏω

(
ψ0 e

i(k·r−ω t)
)
= ℏω ψ (r, t) (14.90)

En comparant les équations aux valeurs propres (14.88) et (14.90) de l’opérateur hamiltonien

pour un photon, on en conclut que l’énergie d’un photon est quantifiée,

E = ℏω (14.91)

ce qui est l’effet photoélectrique (14.2) d’Einstein.

14.2.7 Opérateur position

L’équation aux valeurs propres de l’opérateur position en représentation de position s’écrit,

r̂ ψ (r, t) = r ψ (r, t) (14.92)

On en déduit l’opérateur position en mécanique quantique,

r̂ = r 1̂ (14.93)

où 1̂ est le projecteur identité dans l’espace de Hilbert H.

14.2.8 Relations de commutation canoniques

Les relations de commutation canoniques sont obtenues en commutant l’ordre des compo-

santes cartésiennes des opérateurs de position (14.93) et de quantité de mouvement (14.83),

r̂i = x̂i · r̂ = xi 1̂ et p̂j = x̂j · p̂ = − i ℏ
∂

∂xj
(14.94)

dans leur action sur la fonction d’onde ψ (r, t) = ψ (x1, x2, x3, t),

[r̂i, p̂j ]ψ (x1, x2, x3, t) = r̂i p̂j ψ (x1, x2, x3, t)− p̂j r̂i ψ (x1, x2, x3, t)

= − i ℏ
(
xi
∂ψ (x1, x2, x3, t)

∂xj
− ∂ (xi ψ (x1, x2, x3, t))

∂xj

)
= i ℏ

∂ xi
∂xj

ψ (x1, x2, x3, t) = i ℏ δij ψ (x1, x2, x3, t)

(14.95)

Ainsi, les relations de commutation canonique s’écrivent,

[r̂i, p̂j ] = i ℏ δij 1̂ ou r̂i, p̂j = p̂j r̂i + i ℏ δij 1̂ (14.96)

14.2.9 Principe d’incertitude d’Heisenberg

La variance de l’observable Â est la valeur moyenne du carré de la déviation par rapport

à la valeur moyenne ⟨Â⟩,

(∆A)
2
=
〈(

Â− ⟨Â⟩ 1̂
)2 〉

(14.97)

En écrivant le valeur moyenne comme une forme linéaire (14.52) du vecteur d’état |ψ⟩ et en
tenant compte du fait que l’opérateur Â− ⟨Â⟩ 1̂ est hermitien (14.69), on obtient le résultat

suivant,

(∆A)
2
=
〈
ψ
∣∣∣ (Â− ⟨Â⟩ 1̂

)2 ∣∣∣ψ〉 =
〈(

Â− ⟨Â⟩ 1̂
)
ψ
∣∣∣ (Â− ⟨Â⟩ 1̂

)
ψ
〉

(14.98)

Ainsi,

(∆A)
2
=
∥∥∥(Â− ⟨Â⟩ 1̂

)
ψ
∥∥∥2 (14.99)
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L’inégalité de Cauchy-Schwarz pour le produit des variances des composantes de position et

de quantité de mouvement s’écrit,

(∆ri)
2
(∆pj)

2
=
∥∥∥ (r̂i − ⟨r̂i⟩ 1̂

)
ψ
∥∥∥2 ∥∥∥ (p̂j − ⟨p̂j⟩ 1̂

)
ψ
∥∥∥2 (14.100)

⩾
∣∣∣ ⟨ψ| (r̂i − ⟨r̂i⟩ 1̂

)
|
(
p̂j − ⟨p̂j⟩ 1̂

)
|ψ⟩
∣∣∣2 =

∣∣∣ ⟨(r̂i − ⟨r̂i⟩ 1̂
) (
p̂j − ⟨p̂j⟩ 1̂

)
⟩
∣∣∣2

Cette inégalité est remise en forme de la manière suivante,

(∆ri)
2
(∆pj)

2 ⩾
∣∣∣ ⟨r̂i p̂j⟩ − ⟨r̂i⟩ ⟨p̂j⟩

∣∣∣2 (14.101)

De plus, l’inégalité, ∣∣∣ ⟨r̂i p̂j⟩ − ⟨r̂i⟩ ⟨p̂j⟩
∣∣∣2 ⩾

∣∣∣ Im(⟨r̂i p̂j⟩ − ⟨r̂i⟩ ⟨p̂j⟩
) ∣∣∣2 (14.102)

et les identités,

⟨r̂i⟩ = ⟨r̂i⟩∗ et ⟨p̂j⟩ = ⟨p̂j⟩∗ et ⟨p̂j r̂i⟩ = ⟨r̂i p̂j⟩∗ (14.103)

permettent d’établir l’égalité,

Augustin Cauchy

Hermann Schwarz

∣∣∣ Im(⟨r̂i p̂j⟩ − ⟨r̂i⟩ ⟨p̂j⟩
) ∣∣∣2 =

∣∣∣ 1
2i

(
⟨r̂i p̂j⟩ − ⟨r̂i⟩ ⟨p̂j⟩ − ⟨r̂i p̂j⟩∗ + ⟨r̂i⟩∗ ⟨p̂j⟩∗

) ∣∣∣2
=

1

4

∣∣∣ ⟨r̂i p̂j⟩ − ⟨p̂j r̂i⟩
∣∣∣2 =

1

4

∣∣∣ ⟨r̂i p̂j − p̂j r̂i⟩
∣∣∣2 (14.104)

Ainsi, compte tenu des relations de commutation canoniques (14.96) et des relation (14.102)-

(14.104), l’inégalité de Cauchy-Schwarz (14.101) devient,

(∆ri)
2
(∆pj)

2 ⩾
1

4

∣∣∣ ⟨r̂i p̂j − p̂j r̂i⟩
∣∣∣2 =

1

4

∣∣∣ ⟨ [r̂i, p̂j ] ⟩ ∣∣∣2 =
ℏ2

4
δij (14.105)

La racine carrée de l’inégalité de Cauchy-Schwarz (14.105) donne le principe d’incertitude

d’Heisenberg, aussi appelé les relations d’inégalité d’Heisenberg,

∆ri∆pj ⩾
ℏ
2
δij (14.106)

Ces relations peuvent s’interpréter de la manière suivante : l’incompatibilité de mesure entre

les mêmes composantes des observables de position et de quantité de mouvement, due au

fait que leurs espaces propres sont différents, donne lieu à des incertitudes de mesure lors

d’une mesure simultanée dont le produit est toujours supérieur à ℏ/2.

14.2.10 Equation de Schrödinger

En mécanique classique, l’énergie mécanique d’un point matériel de masse m est décrit

comme la somme de l’énergie cinétique T du centre de masse et l’énergie potentielle V

c’est-à-dire,

E =
p2

2m
+ V (r) (14.107)

D’après le principe de correspondance établi par Niels Bohr, les fonctions classiques sont

les valeurs propres des opérateurs quantiques. Pour effectuer la transition de la mécanique

classique vers la mécanique quantique, on peut donc remplacer l’énergie mécanique E par

l’opérateur hamiltonien Ĥ, la quantité de mouvement p par l’opérateur quantité de mou-

vement p̂ et l’énergie potentielle V (r) fonction de la position par l’énergie potentielle V̂

fonction de l’opérateur position r̂,

E → Ĥ et p→ p̂ et V (r) → V (r̂) (14.108)

Par conséquent, en appliquant le principe de correspondance à l’énergie mécanique (14.107)

on obtient une équation opératorielle pour l’hamitonien d’un point matériel,

Ĥ =
p̂2

2m
+ V (r̂) (14.109)

https://fr.wikipedia.org/wiki/Augustin_Louis_Cauchy
https://fr.wikipedia.org/wiki/Hermann_Amandus_Schwarz
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Compte tenu des définitions de l’opérateur quantité de mouvement (14.83) et de l’opérateur

hamiltonien, l’équation opératorielle (14.160) devient,

i ℏ
∂

∂t
= − ℏ2

2m
∇2 + V (r̂) (14.110)

En faisant agir l’équation opératorielle (14.110) sur la fonction d’onde ψ (r, t) ∈ C, on obtient

l’équation de Schrödinger à valeurs complexes,

i ℏ
∂ψ (r, t)

∂t
= − ℏ2

2m
∇2ψ (r, t) + V (r̂)ψ (r, t) (14.111)

De manière équivalente, en faisant agir l’équation opératorielle (14.110) sur le vecteur d’état

|ψ⟩ ∈ H, on obtient l’équation de Schrödinger à valeurs dans l’espace de Hilbert,

i ℏ
∂ |ψ⟩
∂t

= − ℏ2

2m
∇2|ψ⟩+ V (r̂) |ψ⟩ (14.112)

14.2.11 Moment cinétique

Le moment cinétique décrit une variation spatiale angulaire, c’est-à-dire un mouvement

de rotation dans l’espace. En physique classique, le moment cinétique est le produit vectoriel

de la position et de la quantité de mouvement,

L = r × p (14.113)

D’après le principe de correspondance, pour effectuer la transition de la rotation classique

vers la rotation quantique, on peut donc remplacer la position r par l’opérateur position r̂, la

quantité de mouvement p par l’opérateur quantité de mouvement p̂ et le moment cinétique

L par l’opérateur moment cinétique L̂,

L̂ = r̂ × p̂ (14.114)

Compte tenu des opérateurs quantité de mouvement (14.83) et position (14.93), l’opérateur

moment cinétique (14.114) devient,

L̂ = − i ℏ r ×∇ (14.115)

A l’aide du vecteur position en coordonnées sphériques,

r = r r̂ (14.116)

et du gradient en coordonnées sphériques,

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ
(14.117)

on exprime l’opérateur moment cinétique (14.115) dans le repère sphérique,

L̂ = − i ℏ (r r̂)×
(
�
��r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

)
= − i ℏ

(
ϕ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂ϕ

)
(14.118)

Pour caractériser l’amplitude de rotation, on détermine le carré de l’opérateur moment

cinétique (14.118) qui s’écrit,

L̂2 = L̂ · L̂ = − ℏ2
(
ϕ̂
∂

∂θ

)
·
(
ϕ̂
∂

∂θ

)
− ℏ2

(
θ̂

1

sin θ

∂

∂ϕ

)
·
(
θ̂

1

sin θ

∂

∂ϕ

)
+ ℏ2

�����������(
ϕ̂
∂

∂θ

)
·
(
θ̂

1

sin θ

∂

∂ϕ

)
+ ℏ2

(
θ̂

1

sin θ

∂

∂ϕ

)
·
(
ϕ̂
∂

∂θ

) (14.119)

Les dérivées angulaires partielles des vecteurs unitaires (5.14) s’écrivent,

∂θ̂ (θ, ϕ)

∂θ
= − r̂ (θ, ϕ) et

∂θ̂ (θ, ϕ)

∂ϕ
= cos θ ϕ̂ (ϕ)

∂ϕ̂ (ϕ)

∂θ
= 0 et

∂ϕ̂ (ϕ)

∂ϕ
= − sin θ r̂ (θ, ϕ)− cos θ θ̂ (θ, ϕ)

(14.120)
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Ainsi, le carré de l’opérateur moment cinétique devient,

L̂2 = − ℏ2
(
∂2

∂θ2
+

1

sin2 θ

∂2

∂ϕ2
+

cos θ

sin θ

∂

∂θ

)
(14.121)

Compte tenu de l’identité opératorielle,

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
=

cos θ

sin θ

∂

∂θ
+

∂2

∂θ2
(14.122)

le carré de l’opérateur moment cinétique se réduit à,

L̂2 = − ℏ2
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
(14.123)

Il faut encore caractériser l’orientation de la rotation. A l’aide du vecteur position en coor-

données cylindriques,

r = ρ ρ̂+ z ẑ (14.124)

et du gradient en coordonnées cylindriques,

∇ = ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+ ẑ

∂

∂z
(14.125)

on obtient la composante verticale de l’opérateur moment cinétique (14.115),

L̂z = ẑ · L̂ = − i ℏ ẑ ·
(
(ρ ρ̂+��z ẑ)×

(
�
��ρ̂
∂

∂ρ
+ ϕ̂

1

ρ

∂

∂ϕ
+
�

��ẑ
∂

∂z

))
= − i ℏ

∂

∂ϕ
(14.126)

14.2.12 Relations de commutation du moment cinétique

Les composantes cartésiennes de l’opérateur moment cinétique (14.114) s’écrivent,

L̂x = x̂ · L̂ = r̂y p̂z − r̂z p̂y

L̂y = ŷ · L̂ = r̂z p̂x − r̂x p̂z

L̂z = ẑ · L̂ = r̂x p̂y − r̂y p̂x

(14.127)

Compte tenu des relations de commutation canoniques (14.96), on déduit le commutateur

entre les composantes de l’opérateur moment cinétique L̂x et L̂y,

[L̂x, L̂y] = [(r̂y p̂z − r̂z p̂y) , (r̂z p̂x − r̂x p̂z)]

= [r̂y p̂z, r̂z p̂x]− [r̂y p̂z, r̂x p̂z]− [r̂z p̂y, r̂z p̂x] + [r̂z p̂y, r̂x p̂z]
(14.128)

Compte tenu des relations de commutation canoniques (14.96),

[r̂y p̂z, r̂z p̂x] = r̂y p̂z r̂z p̂x − r̂z p̂x r̂y p̂z = r̂y p̂z r̂z p̂x − r̂y r̂z p̂z p̂x = r̂y [p̂z, r̂z] p̂x = − i ℏ r̂y p̂x
[r̂y p̂z, r̂x p̂z] = r̂y p̂z r̂x p̂z − r̂x p̂z r̂y p̂z = p̂z r̂y r̂x p̂z − p̂z r̂x r̂y p̂z = p̂z [r̂y, r̂x] p̂z = 0

[r̂z p̂y, r̂z p̂x] = r̂z p̂y r̂z p̂x − r̂z p̂x r̂z p̂y = r̂z p̂y p̂x r̂z − r̂z p̂x p̂y r̂z = r̂z [p̂y, p̂x] r̂z = 0

[r̂z p̂y, r̂x p̂z] = r̂z p̂y r̂x p̂z − r̂x p̂z r̂z p̂y = r̂x r̂z p̂z p̂y − r̂x p̂z r̂z p̂y = r̂x [r̂z, p̂z] p̂y = i ℏ r̂x p̂y
(14.129)

le commutateur (14.128) se réduit à

[L̂x, L̂y] = i ℏ (r̂x p̂y − r̂y p̂x) = i ℏ L̂z (14.130)

Comme les composantes cartésiennes de l’opérateur moment cinétique (14.127) sont liées

par une permutation cyclique des coordonnées cartésiennes x → y → z → x, la permuta-

tion cyclique des indices dans la relation de commutation (14.130) donne trois relations de

commutation,

[L̂x, L̂y] = i ℏ L̂z ou L̂x L̂y = L̂y L̂x + i ℏ L̂z
[L̂y, L̂z] = i ℏ L̂x ou L̂y L̂z = L̂z L̂y + i ℏ L̂x
[L̂z, L̂x] = i ℏ L̂y ou L̂z L̂x = L̂x L̂z + i ℏ L̂y

(14.131)
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L’opérateur moment cinétique au carré s’écrit en composantes cartésiennes,

L̂2 = L̂ · L̂ = L̂2
x + L̂2

y + L̂2
z (14.132)

Compte tenu des relations de commutation (14.131), on déduit le commutateur entre les

opérateurs L̂2 et L̂x,

[L̂2, L̂x] = [L̂2
x, L̂x] + [L̂2

y, L̂x] + [L̂2
z, L̂x]

= L̂y L̂y L̂x − L̂x L̂y L̂y + L̂z L̂z L̂x − L̂x L̂z L̂z

= L̂y L̂x L̂y − i ℏ L̂y L̂z − L̂y L̂x L̂y − i ℏ L̂z L̂y
+ L̂z L̂x L̂z + i ℏ L̂z L̂y − L̂z L̂x L̂z + i ℏ L̂y L̂z = 0

(14.133)

La permutation cyclique des indices x → y → z → x dans la relation de commuta-

tion (14.133) donne trois relations de commutation,

[L̂2, L̂x] = 0 et [L̂2, L̂y] = 0 et [L̂2, L̂z] = 0 (14.134)

Les opérateurs d’échelle pour le moment cinétique sont définis comme,

L̂+ = L̂x + i L̂y et L̂− = L̂x − i L̂y (14.135)

Compte tenu des relations de commutation (14.131) et des opérateurs d’échelle (14.135), on

obtient les relations de commutation suivantes,

[L̂z, L̂+] = [L̂z, L̂x] + i [L̂z, L̂y] = i ℏ L̂y + ℏ L̂x = ℏ L̂+

[L̂z, L̂−] = [L̂z, L̂x]− i [L̂z, L̂y] = i ℏ L̂y − ℏ L̂x = − ℏ L̂−
(14.136)

14.2.13 Nombres quantiques associés à la rotation

La fonction d’onde liée à la rotation ψℓ,mℓ
(θ, ϕ) est exprimée en coordonnées sphériques

θ et ϕ en fonction des nombres quantiques ℓ et mℓ comme on va le démontrer dans cette

section. L’équation aux valeurs propres de la composante verticale de l’opérateur moment

cinétique (14.126) s’écrit,

L̂z ψℓ,mℓ
(θ, ϕ) = − i ℏ

∂

∂ϕ
ψℓ,mℓ

(θ, ϕ) = Lz ψℓ,mℓ
(θ, ϕ) (14.137)

La solution de cette équation est la fonction d’onde,

ψℓ,mℓ
(θ, ϕ) = ψ0 e

i
ℏ Lz ϕ (14.138)

Etant donné que l’angle azimutal ϕ ∈ [0, 2π), la fonction d’onde (14.138) est équivalente à

la fonction d’onde,

ψℓ,mℓ
(θ, ϕ) = ψ0 e

i
ℏ Lz(ϕ+2π) (14.139)

L’identification des solutions (14.138) et (14.139) impose la condition,

e i2π
Lz
ℏ = 1 (14.140)

qui est satisfaite si la composante verticale du moment cinétique est quantifiée,

Lz = ℏmℓ (14.141)

où mℓ ∈ Z est le nombre quantique magnétique qui caractérise l’orientation de la rotation.

Compte tenu de la valeur propre (14.141), l’équation aux valeurs propres (14.137) devient,

L̂z ψℓ,mℓ
(θ, ϕ) = ℏmℓ ψℓ,mℓ

(θ, ϕ) (14.142)

La valeur moyenne du carré de l’opérateur moment cinétique (14.132) s’écrit,

⟨L̂2⟩ = ⟨L̂2
x⟩+ ⟨L̂2

y⟩+ ⟨L̂2
z⟩ où ⟨L̂2

y⟩ ⩾ 0 et ⟨L̂2
z⟩ ⩾ 0 (14.143)

La valeur moyenne de la composante verticale de l’opérateur moment cinétique

s’écrit (14.142),

⟨L̂2
z⟩ = ℏ2m2

ℓ (14.144)
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Compte tenu de la relation (14.144), l’inégalité (14.143) devient,

⟨L̂2⟩ − ⟨L̂2
z⟩ = ⟨L̂2⟩ − ℏ2m2

ℓ ⩾ 0 (14.145)

Par conséquent, le nombre magnétique mℓ se trouve dans un intervalle borné inférieurement

et supérieurement par l’inégalité (14.145). Afin d’en rendre compte, on introduit le nombre

quantique azimutal ℓ ∈ N qui caractérise l’amplitude de rotation. Ce nombre est associé

au carré de l’opérateur moment cinétique et défini comme la borne supérieure positive du

nombre magnétique mℓ,

ℓ = max (|mℓ|) (14.146)

Ainsi, les nombres quantiques azimutal ℓ ∈ N et magnétique mℓ ∈ Z satisfont l’inégalité

Pauli et Bohr

toupie tippe-top

suivante,

− ℓ ⩽ mℓ ⩽ ℓ (14.147)

A l’aide des relations de commutations (14.136) et de l’équation aux valeurs propres (14.142),

on obtient le résultat suivant,

L̂z L̂+ ψℓ,mℓ
(θ, ϕ) =

(
L̂+ L̂z + ℏ L̂+

)
ψℓ,mℓ

(θ, ϕ) = ℏ (mℓ + 1)
(
L̂+ ψℓ,mℓ

(θ, ϕ)
)

(14.148)

L’équation aux valeurs propres valeurs propres (14.142) pour mℓ + 1 s’écrit,

L̂z ψℓ,mℓ+1 (θ, ϕ) = ℏ (mℓ + 1)ψℓ,mℓ+1 (θ, ϕ) (14.149)

On en conclut donc que l’opérateur d’échelle L̂+ permet de passer de la fonction d’onde

ψℓ,mℓ
(θ, ϕ) à la fonction d’onde ψℓ,mℓ+1 (θ, ϕ),

L̂+ ψℓ,mℓ
(θ, ϕ) = cℓ,mℓ+1 ψℓ,mℓ+1 (θ, ϕ) (14.150)

où cℓ,mℓ+1 est une constante de normalisation. En vertu de l’inégalité (14.147), le nombre

quantique mℓ ne peut pas être supérieur au nombre quantique ℓ. Par conséquent, pour

mℓ = ℓ, la relation (14.150) devient,

L̂+ ψℓ,ℓ (θ, ϕ) = 0 (14.151)

Compte tenu des opérateurs d’échelle (14.135) et de la relation de commutation, on obtient

l’identité opératorielle,

L̂− L̂+ =
(
L̂x − i L̂y

)(
L̂x + i L̂y

)
= L̂2

x + L̂2
y + i

(
L̂x L̂y − L̂y L̂x

)
= L̂2

x + L̂2
y − ℏ L̂z

(14.152)

A l’aide de cette identité opératorielle, l’opérateur moment cinétique au carré (14.132) peut

être entièrement exprimé en termes des opérateurs L̂z, L̂+ et L̂− comme,

L̂2 = L̂2
x + L̂2

y + L̂2
z = L̂− L̂+ + ℏ L̂z + L̂2

z (14.153)

Compte tenu de la condition (14.151), l’équation aux valeurs propres pour le carré de

l’opérateur moment cinétique s’écrit,

L̂2 ψℓ,ℓ (θ, ϕ) =
(
L̂2
z + ℏ L̂z + L̂− L̂+

)
ψℓ,ℓ (θ, ϕ) = L̂z

(
L̂z + ℏ 1̂

)
ψℓ,ℓ (θ, ϕ) (14.154)

Au vu de l’équation aux valeurs propres (14.142) évaluée en m = ℓ,

L̂z ψℓ,ℓ (θ, ϕ) = ℏ ℓ ψℓ,ℓ (θ, ϕ) (14.155)

l’équation aux valeurs propres du carré de l’opérateur moment cinétique (14.154) devient,

L̂2 ψℓ,ℓ (θ, ϕ) = ℏ2ℓ (ℓ+ 1)ψℓ,ℓ (θ, ϕ) (14.156)

14.3 Chimie quantique

14.3.1 Ensemble complet d’observables compatibles

Un ensemble d’observables compatibles, ou qui commutent, souvent abrégé ECOC, est

une ensemble d’observables qui satisfont deux conditions :

https://fr.wikipedia.org/wiki/Toupie_tippe-top
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1. Les observables commutent toutes entre elles : leurs commutateurs sont nuls.

2. Leurs espaces propres sont égaux : il existe une base orthonormée unique de vecteurs

propres communs à l’ensemble des observables qui décrit complètement l’état.

Etant donné que les observables d’un ECOC commutent, elles sont compatibles. On peut

ainsi les mesurer simultanément, contrairement à la position et la quantité de mouvement.

Les vecteurs d’état faisant partie de la base de l’ECOC sont entièrement caractérisés par les

valeurs propres A1, . . . , An des n opérateurs Â1, · · · , Ân qui sont les observables de l’ECOC.

L’exemple le plus célèbre d’ECOC, qu’on examinera dans la section suivante, est celui qui

décrit la dynamique de l’électron dans un atome d’hydrogène. L’hamiltonien Ĥ, l’opérateur

moment cinétique au carré L̂2 et la composante vertical du moment cinétique L̂z de l’électron

forment un ECOC si on ignore le spin de l’électron.

[Ĥ, L̂2] = 0 et [Ĥ, L̂z] = 0 et [L̂2, L̂z] = 0 (14.157)

On montrera que les vecteurs |n, ℓ,m⟩ de la base orthonormée de cet ECOC ou les fonctions

d’ondes ψn,ℓ,mℓ
sont indicés par le nombre quantique principal n, le nombre azimutal ℓ et le

nombre magnétique m.

14.3.2 Atome d’hydrogène

Par analogie avec l’énergie mécanique du mouvement gravitationnel (9.50), l’énergie de

l’électron dans l’atome d’hydrogène s’écrit,

E =
p2r
2me

+
L2

2mer2
+ VC =

p2r
2me

+
L2

2mer2
− 1

4πε0

e2

r
(14.158)

où VC est l’énergie potentielle de potentiel de Coulomb (14.5) et pr est la composante radiale

de la quantité de mouvement. Pour effectuer la transition de la mécanique classique vers la

mécanique quantique, on peut remplacer l’énergie mécanique E par l’opérateur hamiltonien

Ĥ, la composante radiale de la quantité de mouvement pr par l’opérateur p̂r, et 1 par le

projecteur identité 1̂,

E → Ĥ et pr → p̂r et 1 → 1̂ (14.159)

Par conséquent, en appliquant le principe de correspondance à l’énergie de l’électron (14.159)

on obtient une équation opératorielle pour l’hamiltonien de l’électron au sein de l’atome

d’hydrogène,

Ĥ =
p̂2r
2me

+
L̂2

2mer2
− 1

4πε0

e2

r
1̂ (14.160)

A l’aide du gradient en coordonnées scalaires (14.117), l’opérateur de quantité de mouvement

radiale p̂r s’écrit,

p̂r = r̂ (r̂ · p̂) = − i ℏ r̂ (r̂ ·∇) = − i ℏ r̂
∂

∂r
(14.161)

Compte tenu des opérateurs (14.83) et (14.161) et du gradient en coordonnées

sphériques (14.117), le carré de l’opérateur de quantité de mouvement radiale a pour expres-

sion,

p̂2r = p̂ · p̂r = − ℏ2
(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ ϕ̂

1

r sin θ

∂

∂ϕ

)
·
(
r̂
∂

∂r

)
(14.162)

Les dérivées partielles du vecteur unitaire radial (5.14) s’écrivent,

∂r̂ (θ, ϕ)

∂r
= 0 et

∂r̂ (θ, ϕ)

∂θ
= θ̂ (θ, ϕ) et

∂r̂ (θ, ϕ)

∂ϕ
= sin θ ϕ̂ (ϕ) (14.163)

Ainsi, le carré de l’opérateur quantité de mouvement radiale devient,

p̂2r = − ℏ2
(
∂2

∂r2
+

2

r

∂

∂r

)
= − ℏ2

r2
∂

∂r

(
r2
∂

∂r

)
(14.164)

Comme le carré de l’opérateur quantité de mouvement radiale (14.164) ne dépend que de la

coordonnée sphérique radiale r et que les opérateurs moment cinétique au carré (14.2.11) et
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moment cinétique radial ne dépendent que des coordonnées sphériques angulaires θ et ϕ, ils

commutent,

[p̂2r, L̂
2] = 0 et [p̂2r, L̂z] = 0 (14.165)

Compte tenu de l’hamiltonien de l’électron (14.160) dans un atome d’hydrogène et des

relations de commutation (14.134) et (14.165), on obtient les relations de commutation,

[Ĥ, L̂2] = 0 et [Ĥ, L̂z] = 0 (14.166)

On en conclut que l’ensemble des opérateurs {Ĥ, L̂2, L̂z} sont des observables compatibles

qui forment un ECOC. Le nombre quantique associé à l’opérateur Hamiltonien est le nombre

quantique principal n. Compte tenu du fait que le nombre quantique principal n rend compte

du mouvement radial et du mouvement angulaire de l’électron, décrit par le nombre quan-

tique azimutal ℓ, le nombre quantique principal doit être supérieur au nombre quantique

azimutal,

n ⩾ ℓ+ 1 ainsi n ∈ N∗ (14.167)

Dans un état stationnaire où les grandeurs physiques sont indépendantes du temps,

l’équation aux valeurs propres de l’hamiltonien de l’électron, appelée l’équation de Schrödin-

ger stationnaire s’écrit,

Ĥ ψn,ℓ,mℓ
(r, θ, ϕ) = En ψn,ℓ,mℓ

(r, θ, ϕ) (14.168)

où En est le niveau d’énergie de la ne couche atomique. La fonction d’onde de l’électron se

factorise en une partie radiale Rn (r) et une partie angulaire Yℓ,mℓ
(θ, ϕ),

ψn,ℓ,mℓ
(r, θ, ϕ) = Rn,ℓ (r)Yℓ,mℓ

(θ, ϕ) (14.169)

La partie angulaire Yℓ,mℓ
(θ, ϕ), appelée harmonique sphérique, est solution des équations

Partie radiale
aux valeurs propres (14.156) et (14.142),

L̂2 Yℓ,mℓ
(θ, ϕ) = ℏ2ℓ (ℓ+ 1)Yℓ,mℓ

(θ, ϕ)

L̂z Yℓ,mℓ
(θ, ϕ) = ℏmℓ Yℓ,mℓ

(θ, ϕ)
(14.170)

Compte tenu de l’équation aux valeurs propres du carré de l’opérateur moment

Edmond Laguerre

Harmoniques

sphériques

cinétique (14.156) et de l’hamiltonien (14.160), en substituant l’opérateur quantité de mouve-

ment radiale au carré (14.164) et la fonction d’onde (14.169) dans l’équation de Schrödinger

stationnaire (14.171) et en divisant par l’harmonique sphérique Yℓ,mℓ
(θ, ϕ), on obtient,(

− ℏ2

2mer2
∂

∂r

(
r2
∂

∂r

)
+

ℏ2ℓ (ℓ+ 1)

2mer2
− 1

4πε0

e2

r

)
Rn,ℓ (r) = EnRn,ℓ (r) (14.171)

On peut montrer que la partie radiale Rn,ℓ (r) qui satisfait l’équation aux valeurs

propres (14.171) s’écrit,

Rn,ℓ (r) =

√(
2

na0

)3
(n− ℓ− 1)!

2n (n+ ℓ)!
L
(2ℓ+1)
n− ℓ− 1

(
2r
n a0

)( 2r

n a0

)ℓ
e−

r
n a0 (14.172)

où a0 est le rayon de Bohr et les fonctions L
(2ℓ+1)
n− ℓ− 1

(
2r
n a0

)
sont les polynômes de Laguerre

généralisés,

L
(α)
k (x) =

x−αex

k!

dk

dxk
(
e− xxk+α

)
où x = 2r

n a0
(14.173)

k = n− ℓ− 1 et α = 2ℓ+1. Les états de l’électron qui sont liés au noyau sur les différentes

couches électroniques ont une énergie négative quantifiée En qui est un multiple de l’énergie

d’ionisation, comme dans le modèle de Bohr-Sommerfeld (14.13),

En = − EI
n2

(14.174)

En substituant le carré de l’opérateur moment cinétique (14.123) et la composante verticale

https://fr.wikipedia.org/wiki/Atome_d'hydrogène
https://fr.wikipedia.org/wiki/Edmond_Laguerre
https://fr.wikipedia.org/wiki/Harmonique_sphérique
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de l’opérateur moment cinétique (14.126) dans les équations aux valeurs propres (14.170),

celles-ci deviennent,

− ℏ2
(

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
Yℓ,mℓ

(θ, ϕ) = ℏ2ℓ (ℓ+ 1)Yℓ,mℓ
(θ, ϕ)

− i ℏ
∂

∂ϕ
Yℓ,mℓ

(θ, ϕ) = ℏmℓ Yℓ,mℓ
(θ, ϕ)

(14.175)

On peut montrer que les harmoniques sphériques qui satisfont les équations aux valeurs

propres (14.175) s’écrivent,

Yℓ,mℓ
(θ, ϕ) = (−1)

mℓ

√
(2ℓ+ 1)

4π

(ℓ−mℓ)!

(ℓ+mℓ)!
P mℓ

ℓ (cos θ) eimℓϕ (14.176)

où les fonctions P mℓ

ℓ (cos θ) sont les polynômes associés de Legendre exprimés en termes des

polynômes de Legendre Pℓ (cos θ) comme,

P mℓ

ℓ (x) = (−1)
m (

1− x2
)mℓ/2 dmℓ

dxmℓ
Pℓ (x) où x = cos θ (14.177)

et les polynômes de Legendre Pℓ (x) sont définis comme,

Adrien-Marie

Legendre
Pℓ (x) =

1

2ℓℓ!

dℓ

dxℓ
(x− 1)

ℓ
où x = cos θ (14.178)

14.3.3 Orbitales atomiques

La fonction d’onde propre ψn,ℓ,mℓ
(r, θ, ϕ) ∈ C de l’électron de l’atome d’hydrogène est

la représentation en coordonnées sphériques du vecteur d’état |n, ℓ,mℓ⟩ ≡ ψn,ℓ,mℓ
∈ H de

l’électron :

ψn,ℓ,mℓ
(r, θ, ϕ) = ⟨r, θ, ϕ |n, ℓ,mℓ⟩ (14.179)

Le vecteur d’état |n, ℓ,mℓ⟩ ≡ ψn,ℓ,mℓ
décrit les orbitales sur lesquelles peuvent se trouver

l’électron. Le niveau d’énergie, ou la couche électronique est décrit par le nombre quantique

principal n, le type d’orbitale est décrit par le nombre quantique azimutal ℓ et l’orientation

de l’orbitale est décrite par le nombre magnétique mℓ. Les orbitales sont classées pour les

trois premiers niveaux d’énergie (Tab. 14.1) et illustrées (Fig. 14.6).

Table 14.1 Classifications des orbitales en termes des nombres quantiques

Principal n Azimutal ℓ Magnétique mℓ Type

1 0 0 s

2 0 0 s

2 1 -1,0,1 p

3 0 0 s

3 1 1,0,1 p

3 2 -2,-1,0,1,2 d

14.3.4 Effet Zeeman

En physique classique, le vecteur moment dipolaire magnétique µe d’un électron est le

produit du courant électrique I généré par le mouvement de l’électron sur son orbite et du

vecteur aireA de l’orbite de Bohr orienté orthogonalement à l’orbite selon la règle de la main

droite. Compte tenu du moment cinétique (14.113), le moment magnétique d’un électron

sur une orbite horizontale s’écrit au premier ordre comme,

µe = IA = − e Ȧ = − e

2
r × v = − e

2me
r × p = − e

2me
L (14.180)

https://fr.wikipedia.org/wiki/Adrien-Marie_Legendre
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Figure 14.6 Orbitales de l’électron de l’atome d’hydrogène décrites par le vecteur d’état
|n, ℓ,mℓ⟩.

L’énergie potentielle d’interaction entre le moment dipolaire magnétique de l’électrique µe
et un champ magnétique extérieur vertical B = B ẑ s’écrit,

E int = −µe ·B =
e

2me
L ·B =

eB

2me
Lz (14.181)

D’après le principe de correspondance, afin d’effectuer la transition de la mécanique classique

vers la mécanique quantique, on peut remplacer l’énergie d’interaction E par l’opérateur

hamiltonien d’interaction Ĥ et la composante verticale du moment cinétique Lz par la

composante verticale de l’opérateur moment cinétique,

E int → Ĥint et Lz → L̂z (14.182)

Ainsi, l’hamiltonien d’interaction entre le moment magnétique de l’électron et le champ

magnétique extérieur s’écrit,

Ĥint =
eB

2me
L̂z (14.183)

A présent, on considère l’interaction de l’électron d’un atome d’hydrogène avec un champ

magnétique extérieur vertical. Comme l’hamiltonien d’interaction Ĥint est un multiple de

l’opérateur L̂z, alors compte tenu de la relation de commutation (14.166), l’hamiltonien

d’interaction (14.183) commute avec l’hamiltonien libre (14.160),

[Ĥint, Ĥ0] = 0 (14.184)

où Ĥ0 est l’hamiltonien libre. Ainsi, l’hamiltonien d’interaction préserve l’ECOC de l’atome

d’hydrogène libre |n, ℓ,mℓ⟩. L’équation aux valeurs propres pour l’hamiltonien total Ĥ =

Ĥ0 + Ĥint s’écrit,

Ĥ |n, ℓ,mℓ⟩ = En,mℓ
|n, ℓ,mℓ⟩ (14.185)

où l’énergie totale est En,mℓ
= En + E int. De manière équivalente, cette équation est,(

Ĥ0 + Ĥint

)
|n, ℓ,mℓ⟩ = (En + E int) |n, ℓ,mℓ⟩ (14.186)

Compte tenu des équations aux valeurs propres pour l’hamiltonien (14.171) et pour la com-

posante verticale de l’opérateur moment cinétique (14.142), et de l’hamiltonien d’interac-

tion (14.183), on obtient,

Ĥint |n, ℓ,mℓ⟩ =
eB

2me
L̂z |n, ℓ,mℓ⟩ =

eℏ
2me

mℓB |n, ℓ,mℓ⟩ (14.187)

où l’énergie d’interaction s’écrit,

E int = − |e|ℏ
2me

mℓB = −µBmℓB (14.188)
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où µB est le magnétron de Bohr défini comme,

µB =
|e|ℏ
2me

(14.189)

Ainsi, compte tenu des niveaux d’énergie de l’atome d’hydrogène libre (14.174), en présence

Pieter Zeeman

Effet Zeeman normal

d’un champ magnétique extérieur, il y a une séparation des niveaux d’énergie En en sous-

niveaux distincts pour des nombres magnétiques mℓ différents,

En,mℓ
= − EI

n2
− µBmℓB (14.190)

Ce processus de séparation des niveaux d’énergie sous l’effet d’un champ magnétique s’ap-

pelle l’effet Zeeman normal. Le nombre 2ℓ+1 de sous-niveaux est impair. Expérimentalement,

on observe que le nombre de sous-niveaux est pair. En particulier, pour les orbitales de type

s pour lesquelles ℓ = 0, on observe deux sous-niveaux ce qui est contraire à l’effet Zeeman

normal. Pour remédier, Wolfgang Pauli postule en 1924 l’existence d’une nombre quantique

supplémentaire qui peut prendre que deux valeurs.

14.3.5 Spin

En 1925, George Uhlenbeck et Samuel Goudsmit qui étaient postdoctorant et docto-

rant dans le laboratoire de Paul Ehrenfest à Leiden proposent que ce nombre quantique

supplémentaire est dû à l’existence d’un moment cinétique intrinsèque S de l’électron qu’ils

ont appelé le spin. Uhlenbeck a ensuite réalisé que la vitesse tangentielle due à la rotation

propre de l’électron sur lui-même correspondant au spin serait supérieure à la vitesse de pro-

pagation de le lumière dans le vide c. Il a donc demandé à Paul Ehrenfest de ne pas publier

l’article sur le spin de l’électron en argumentant que “l’hypothèse du spin n’est pas physique

est ne devrait pas être publiée”. Ehrenfest lui a rétorqué : “J’ai déjà soumis l’article en vue

de sa publication. Il sera publié dans deux semaines”. Puis, il a ajouté : “Vous êtes tous les

deux jeunes et pouvez vous permettre de faire quelque chose de stupide.” Pas si stupide que

cela en fin de compte, heureusement qu’Ehrenfest a persisté... Afin de tenir compte du spin

Samuel Goudsmit

George Uhlenbeck

S de l’électron, le moment cinétique orbital L de l’électron doit donc être remplacé par le

moment cinétique total,

J = L+ S (14.191)

Par conséquent, le moment magnétique de l’électron (14.180) devient,

µe = − e

2me
J = − e

2me
(L+ S) (14.192)

et l’énergie d’interaction devient,

E int = −µe ·B =
e

2me
(L+ S) ·B =

eB

2me
(Lz + Sz) (14.193)

D’après le principe de correspondance, afin d’effectuer la transition de la mécanique classique

vers la mécanique quantique, on peut remplacer l’énergie d’interaction E par l’opérateur

hamiltonien d’interaction Ĥ et la composante verticale du moment cinétique Lz par la

composante verticale de l’opérateur moment cinétique,

E int → Ĥint et Lz → L̂z et Sz → Ŝz (14.194)

Ainsi, l’hamiltonien d’interaction entre le moment magnétique de l’électron et le champ

magnétique extérieur s’écrit,

Ĥint =
eB

2me

(
L̂z + Ŝz

)
(14.195)

Par analogie avec les équations aux valeurs propres (14.142) et (14.149) pour les opérateurs

moment cinétique orbital au carré L̂2 et moment cinétique orbital vertical L̂z, Uhlenbeck et

Goudsmit font l’hypothèse raisonnable que l’opérateur de spin au carré Ŝ2 et l’opérateur de

spin vertical Ŝz satisfont les équations aux valeur propres suivantes,

Ŝ2|s,ms⟩ = ℏ2s (s+ 1) |s,ms⟩
Ŝz|s,ms⟩ = ℏms |s,ms⟩

(14.196)

https://fr.wikipedia.org/wiki/Pieter_Zeeman
https://fr.wikipedia.org/wiki/
https://fr.wikipedia.org/wiki/Samuel_Goudsmit
https://fr.wikipedia.org/wiki/George_Uhlenbeck
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où s est le nombre quantique de spin et ms est le nombre quantique magnétique de spin.

Paul Ehrenfest

Par analogie avec le moment cinétique orbital (14.147), le spin s et le spin magnétique ms

satisfont l’inéquation suivante,

− s ⩽ ms ⩽ s (14.197)

Les opérateurs de spin au carré Ŝ2 et de spin vertical Ŝz commutent entre eux et avec

l’Hamiltonien total Ĥ,

[Ĥ, Ŝ2] = 0 et [Ĥ, Ŝz] = 0 et [Ŝ, Ŝz] = 0 (14.198)

Ainsi, l’hamiltonien d’interaction (14.195) commute avec l’hamiltonien libre (14.160),

[Ĥint, Ĥ0] = 0 (14.199)

Afin de tenir compte du spin, l’ECOC de l’atome d’hydrogène doit être élargi afin d’inclure

l’opérateur de spin au carré Ŝ2 et la composante verticale de l’opérateur de spin Ŝz. Ainsi,

l’ECOC est le suivant : {Ĥ, L̂2, L̂z, Ŝ
2, Ŝz}. Les vecteurs propres de cet ECOC, sont alors

déterminés par cinq nombres quantiques : le nombre principal n, le nombre azimutal ℓ, le

nombre magnétiquemℓ, le spin s, le spin magnétiquems. Ces vecteurs appartenant à l’espace

de Hilbert H s’écrivent,

|n, ℓ,mℓ, s,ms⟩ = |n, ℓ,mℓ⟩ ⊗ |s,ms, ⟩ (14.200)

où |n, ℓ,mℓ⟩ est le vecteur d’état de la partie orbitale et |s,ms⟩ est le vecteur d’état de

spin et le symbole ⊗ représente le produit tensoriel entre ces vecteurs. En présence du spin,

l’équation aux valeurs propres pour l’hamiltonien total Ĥ = Ĥ0 + Ĥint de l’électron s’écrit,

Ĥ |n, ℓ,mℓ, s,ms⟩ = En,mℓ,ms |n, ℓ,mℓ, s,ms⟩ (14.201)

où l’énergie totale est En,mℓ,ms = En + E int. De manière équivalente, cette équation est,(
Ĥ0 + Ĥint

)
|n, ℓ,mℓ, s,ms⟩ = (En + E int) |n, ℓ,mℓ, s,ms⟩ (14.202)

Compte tenu des équations aux valeurs propres pour l’hamiltonien (14.201), pour les com-

posantes verticales de l’opérateur moment cinétique orbital (14.142) et de l’opérateur de

spin (14.196), et de l’hamiltonien d’interaction (14.195), on obtient,

Ĥint |n, ℓ,mℓ, s,ms⟩ =
eB

2me

(
L̂z + Ŝz

)
|n, ℓ,mℓ, s,ms⟩ =

eℏ
2me

(mℓ +ms)B |n, ℓ,mℓ, s,ms⟩
(14.203)

où l’énergie d’interaction s’écrit,

E int = −µBmℓB (14.204)

Ainsi, compte tenu des niveaux d’énergie de l’atome d’hydrogène libre (14.174), en présence

d’un champ magnétique extérieur, il y a une séparation des niveaux d’énergie En en sous-

niveaux distincts pour des nombres magnétiques mℓ et des nombres magnétiques de spin ms

différents,

En,mℓ,ms
= − EI

n2
− µB (mℓ +ms)B (14.205)

Afin de rendre compte de l’observation de l’effet anormal de Zeeman avec un nombre pair

de sous-niveaux, compte tenu de l’inégalité (14.206), le nombre magnétique de spin pour

l’électron peut donc prendre uniquement deux valeurs qui diffèrent d’une unité,

ms ∈
{
− 1

2
,
1

2

}
ainsi s =

1

2
(14.206)

On montrera que l’électron est un fermion de spin s = 1/2.

https://fr.wikipedia.org/wiki/Paul_Ehrenfest
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14.3.6 Matrices de Pauli

Il y a donc deux vecteurs d’état propres |s,ms⟩ pour le spin de l’électron : le vecteur “spin

up” et le vecteur “spin down”,

| ↑ ⟩ =
∣∣∣∣ 12 , 12

〉
et | ↓ ⟩ =

∣∣∣∣ 12 ,− 1

2

〉
(14.207)

qui forment une base de l’espace de Hilbert de la partie spin HS = C2. Dans la base

orthonormée { | ↑ ⟩, | ↓ ⟩ }, les vecteurs propres s’écrivent en composantes comme,

| ↑ ⟩ =
(
1

0

)
et | ↓ ⟩ =

(
0

1

)
(14.208)

Les opérateurs de spin Ŝx ∈ L
(
C2
)
, Ŝy ∈ L

(
C2
)
et Ŝz ∈ L

(
C2
)
sont représentés par dans

l’espace de Hilbert par des matrices 2×2 à coefficients complexes. Les équations aux valeurs

propres ms = ±ℏ/2 pour l’opérateur de spin vertical Ŝz s’écrivent,

Ŝz| ↑ ⟩ = ℏ
2
| ↑ ⟩

Ŝz| ↓ ⟩ = − ℏ
2
| ↓ ⟩

(14.209)

Ainsi, dans la base orthonormée { | ↑ ⟩, | ↓ ⟩ }, l’opérateur de spin vertical Ŝz est représenté

par la matrice diagonale,

Ŝz =
ℏ
2

(
1 0

0 − 1

)
(14.210)

Par analogie avec les relations de commutation (14.131) entre les composantes cartésiennes

de l’opérateur moment cinétique, les composantes cartésiennes de l’opérateur de spin satis-

font les relations de commutation,

[Ŝx, Ŝy] = i ℏ Ŝz et [Ŝy, Ŝz] = i ℏ Ŝx et [Ŝz, Ŝx] = i ℏ Ŝy (14.211)

Les opérateurs d’échelle pour le spin sont définis comme,

Ŝ+ = Ŝx + i Ŝy et Ŝ− = Ŝx − i Ŝy (14.212)

Compte tenu des relations de commutation (14.211) et des opérateurs d’échelle (14.216), on

obtient les relations de commutation suivantes,

[Ŝz, Ŝ+] = [Ŝz, Ŝx] + i [Ŝz, Ŝy] = i ℏ Ŝy + ℏ Ŝx = ℏ Ŝ+

[Ŝz, Ŝ−] = [Ŝz, Ŝx]− i [Ŝz, Ŝy] = i ℏ Ŝy − ℏ Ŝx = − ℏ Ŝ−
(14.213)

Par analogie avec les opérateurs d’échelle du moment cinétique orbital, l’opérateur de spin

Ŝ+ envoie le vecteur “spin down” sur le vecteur “spin up” et vice versa pour l’opérateur de

spin Ŝ−,

Ŝ+| ↓ ⟩ = ℏ | ↑ ⟩
Ŝ−| ↑ ⟩ = ℏ | ↓ ⟩

(14.214)

Ainsi, dans la base orthonormée { | ↑ ⟩, | ↓ ⟩ }, les opérateurs d’échelle pour le spin Ŝ+ et Ŝ−
sont représentés par les matrices,

Ŝ+ = ℏ
(
0 1

0 0

)
et Ŝ− = ℏ

(
0 0

1 0

)
(14.215)

Les opérateurs de spin Ŝx et Ŝy peuvent être écrit en termes des opérateurs d’échelle Ŝ+ et

Ŝ− en inversant les relations (14.216),

Ŝx =
1

2

(
Ŝ+ + Ŝ−

)
et Ŝy = − i

2

(
Ŝ+ − Ŝ−

)
(14.216)

Ainsi,compte tenu des opérateurs d’échelle pour le spin (14.216) et des relations (14.216),

les opérateurs de spin horizontaux Ŝx et Ŝy sont représentés dans la base orthonormée
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{ | ↑ ⟩, | ↓ ⟩ } par les matrices sans trace,

Ŝx =
ℏ
2

(
0 1

1 0

)
et Ŝy =

ℏ
2

(
0 − i

i 0

)
(14.217)

Pour décrire l’opérateur de spin des électrons de nombre quantique de spin s = 1/2, il est utile

d’introduire des opérateurs sans dimension physique associés aux composantes cartésiennes

de l’opérateur de spin et définis de la manière suivante,

Ŝx =
ℏ
2
σ̂x et Ŝy =

ℏ
2
σ̂y et Ŝz =

ℏ
2
σ̂z (14.218)

Compte tenu des opérateurs de spin (14.210) et (14.217), les opérateurs σ̂x, σ̂y et σ̂z sont

représentés par des matrices 2× 2 appelées les matrices de Pauli,

σ̂x =

(
0 1

1 0

)
et σ̂y =

(
0 − i

i 0

)
et σ̂z =

(
1 0

0 − 1

)
(14.219)

A l’aide des opérateurs de spin (14.218) et de leurs relations de commutation (14.211) on

obtient les relations de commutation entre les matrices de Pauli σ̂x, σ̂y et σ̂z,

[σ̂x, σ̂y] = 2i σ̂z et [σ̂y, σ̂z] = 2i σ̂x et [σ̂z, σ̂x] = 2i σ̂y (14.220)

La relation de commutation générale entre les matrices de Pauli, compte tenu des identifi-

cations des indices x = 1, y = 2 et z = 3, est la suivante,

[σ̂i, σ̂j ] = σ̂i σ̂j − σ̂j σ̂i = 2i εijk σ̂k où i, j, k ∈ {1, 2, 3} (14.221)

et εijk sont les composantes complètement antisymétriques du tenseur de rang 3 de Levi-

Civita avec ε123 = 1. Les matrices de Pauli au carré s’écrivent,

σ̂2
x =

(
0 1

1 0

)(
0 1

1 0

)
=

(
1 0

0 1

)
= 1̂

σ̂2
y =

(
0 − i

i 0

)(
0 − i

i 0

)
=

(
1 0

0 1

)
= 1̂

σ̂2
z =

(
1 0

0 − 1

)(
1 0

0 − 1

)
=

(
1 0

0 1

)
= 1̂

(14.222)

Elles satisfont les identités suivantes,

σ̂x σ̂y + σ̂y σ̂x =

(
0 1

1 0

)(
0 − i

i 0

)
+

(
0 − i

i 0

)(
0 1

1 0

)
=

(
0 0

0 0

)
σ̂y σ̂z + σ̂z σ̂y =

(
0 − i

i 0

)(
1 0

0 − 1

)
+

(
1 0

0 − 1

)(
0 − i

i 0

)
=

(
0 0

0 0

)
σ̂z σ̂x + σ̂x σ̂z =

(
1 0

0 − 1

)(
0 1

1 0

)
+

(
0 1

1 0

)(
1 0

0 − 1

)
=

(
0 0

0 0

) (14.223)

Au vu des identités (14.222) et (14.223), la relation d’anticommutation générale entre les

matrices de Pauli s’écrit,

{σ̂i, σ̂j} = σ̂i σ̂j + σ̂j σ̂i = 2 δij 1̂ où i, j ∈ {1, 2, 3} (14.224)

La moyenne arithmétique des relations de commutation (14.224) et d’anticommuta-

tion (14.224) s’écrit,

σ̂i σ̂j =
1

2

(
[σ̂i, σ̂j ] + {σ̂i, σ̂j}

)
= δij 1̂ + i εijk σ̂k où i, j, k ∈ {1, 2, 3} (14.225)

Les matrices de Pauli σx, σy et σz forment une base de l’algèbre su (2) du groupe de Lie

SU (2).
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14.3.7 Principe d’exclusion

L’hamiltonien d’un système de deux particules indiscernables, comme deux électrons par

exemple, est invariant par permutation des particules. Cela se traduit par le fait que l’ha-

miltonien Ĥ commute avec l’opérateur de permutation des particules P̂12,

[Ĥ, P̂12] = 0 (14.226)

Le carré de l’opérateur de permutation est l’opérateur identité,

P̂ 2
12 = 1̂ (14.227)

Ainsi, le spectre de l’opérateur de permutation P̂12, qui est l’ensemble de ses valeurs propres,

s’écrit,

σ
(
P̂12

)
= {− 1, 1} (14.228)

L’équation aux valeurs propres pour l’opérateur de permutation agissant sur le vecteur d’état

|x1, x2⟩ du système est,

P̂12 |x1, x2⟩ = |x2, x1⟩ = ± |x1, x2⟩ (14.229)

où x1 = {n1, ℓ1,mℓ1 , s1,ms1} représente l’ensemble des nombres quantiques de la première

particule et x2 = {n2, ℓ2,mℓ2 , s2,ms2} représente l’ensemble des nombres quantiques de la

deuxième particule. En mécanique quantique, les particules identiques sont indiscernables et

classées en deux familles définies par les valeurs propres ± 1 de l’opérateur de permutation

P̂12. Les particules dont le vecteur d’état est symétrique par permutation sont des bosons,

|x2, x1⟩ = |x1, x2⟩ (14.230)

Les bosons sont des particules d’échange comme le photon dont le spin s est entier. Les

particules dont le vecteur d’état est antisymétrique par permutation sont des fermions,

|x2, x1⟩ = − |x1, x2⟩ (14.231)

Les fermions sont des particules comme l’électron et le proton dont le spin s est demi-entier.

Wolfgang Pauli
Comme le vecteur d’état (14.231) du système formé de deux fermions est antisymétrique

par permutation, il a la forme suivante,

|x1, x2⟩ =
1√
2

(
|x1⟩1 ⊗ |x2⟩2 − |x2⟩1 ⊗ |x1⟩2

)
(14.232)

où le symbole ⊗ représente le produit tensoriel entre les vecteurs d’état |x1⟩1 et |x2⟩1 ap-

partenant à l’espace de Hilbert H1 des états de la première particule et les vecteurs d’état

|x1⟩2 et |x2⟩2 appartenant à l’espace de Hilbert H2 des états de la deuxième particule. Si les

deux fermions sont dans le même état quantique, ils ont les mêmes nombres quantiques,

x1 = x2 ainsi |x1⟩1 = |x2⟩1 et |x1⟩2 = |x2⟩2 (14.233)

alors le vecteur d’état du système (14.232) s’annule,

|x1, x2⟩ = |x, x⟩ = 0 si x1 = x2 = x (14.234)

Cela signifie que la probabilité (14.57) de mesurer deux fermions dans le même état est nulle,

p (x, x) = |⟨x, x|x1, x2⟩|2 = 0 (14.235)

On obtient ainsi le principe d’exclusion que Wolfgang Pauli a énoncé en 1925. Ce principe

stipule que deux fermions ne peuvent jamais être observés dans le même état quantique.

14.3.8 Tableau périodique des éléments

Le premier tableau périodique de classification des atomes a été réalisé par le chimiste

Dimitri Mendelëıev en 1869. Ce tableau était différent de celui qu’on utilise aujourd’hui

mais similaire dans son principe. L’intérêt d’un tel tableau était non seulement de clas-

sifier systématiquement les atomes en fonction de leur périodicité mais aussi d’identifier

des atomes encore inconnus et de prédire certaines de leurs propriétés. Pour un atome de

https://fr.wikipedia.org/wiki/Wolfgang_Pauli
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numéro atomique Z, c’est-à-dire un atome dont le noyau est formé de Z protons, l’hamilto-

nien libre (14.160) d’un électron interagissant avec le noyau devient,

Ĥ0 =
p̂2r
2me

+
L̂2

2mer2
− 1

4πε0

Ze2

r
1̂ (14.236)

Le classement des atomes dans le tableau périodiques des éléments se fait d’abord par

Dimitri Mendelëıev

ordre de numéro atomique Z croissant (Fig 14.7). Quatre nombres quantiques définissent

l’agencement de ce tableau. Premièrement, le nombre principal n détermine la couche ato-

mique et correspond à une ligne du tableau. Deuxièmement, le nombre quantique azimutal

ℓ détermine la sous-couche atomique, c’est-à-dire le type d’orbitale, et correspond à un bloc

du tableau. Troisièmement, le nombre quantique magnétique orbital mℓ détermine l’orbi-

tale dans une sous-couche. Quatrièmement, le nombre quantique magnétique de spin ms

détermine l’électron sur une orbitale.

Figure 14.7 Tableau périodique des éléments. Les orbitales sont classées par blocs de
couleur : le bloc s en bleu, le bloc p en vert, le bloc d en rose et le bloc f en orange.

Les atomes qui contiennent n ⩾ 5 couches atomiques ne sont pas stables et ne figurent

donc pas dans ce tableau. Les quatre blocs de couleur différente (Fig 14.7) correspondent

aux orbitales de type s où ℓ = 0, de type p où ℓ = 1, de type d où ℓ = 2, de type f où

ℓ = 3. Compte tenu l’inégalité (14.147), il y a des orbitales p que pour les couches atomiques

n = 2, 3, 4, des orbitales d que pour les couches atomiques n = 3, 4 et des orbitales f que

pour la couche atomique n = 4. Au vu de l’inégalité (14.167), il y a 1 orbitale de type

s, 3 orbitales de type p, 5 orbitales de type d et 7 orbitales de type f sur une couche

atomique n donnée. En vertu du principe d’exclusion de Pauli, il y a deux électrons sur

chaque orbitale atomique : un électron “spin-up” ↑ et un “électron “spin-down” ↓ afin de

garantir que leur état quantique soit différent. Finalement, l’ordre des colonnes correspond

au nombre d’électrons présents sur la couche atomique n correspondant à la ligne (Fig 14.7).

Les abréviations des types d’orbitales ont été introduites par Rydberg : s pour “sharp”, p

pour “principal”, d pour “diffuse” et f pour “fundamental”.

14.4 Information quantique

14.4.1 Processus de mesure

Le spin des électrons a été mis en évidence en 1922 par une célèbre expérience réalisée par

Otto Stern et Walther Gerlach pour laquelle ils ont reçu le prix Nobel de physique en 1943.

Dans cette expérience, un faisceau d’atomes d’argent est envoyé dans un appareil qui génère

un champ magnétique vertical B = B ẑ inhomogène (Fig. 14.8). En physique classique, la

déviation des atomes d’argent est due à la force magnétique verticale générée par le champ

https://fr.wikipedia.org/wiki/Dmitri_Mendeleïev
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magnétique inhomogène vertical dans l’entrefer de l’aimant,

Fm =

(
µe ·

∂

∂z
B

)
ẑ (14.237)

En physique classique, on devrait donc observer une tache continue verticale due à l’action

de la force magnétique verticale sur le moment magnétique µe des électrons des atomes

d’argent. Or, l’expérience révèle deux taches distinctes de taille égale sur un écran. Pour en

rendre compte, au vu des expressions (14.180) et (14.192) du moment cinétique de l’électron,

il est donc nécessaire d’introduire un moment cinétique intrinsèque S, le spin, qui donne lieu

à un moment magnétique µe non-nul même en absence de moment cinétique orbital L.

Otto Stern

Walther Gerlach

Figure 14.8 Des atomes d’argent pénètrent dans l’appareil de Stern-Gerlach qui génère
un champ magnétique inhomogène. Ils sont déviés verticalement est forment deux taches
de taille égale sur un écran.

L’expérience de Stern-Gerlach (Fig. 14.8) révèle que lors du processus de mesure, le nombre

quantique magnétique de spin ms ne peut prendre que deux valeurs : ms = 1/2 pour le “spin

up” ↑ et ms = − 1/2 pour le “spin down” ↓ . Dans le cadre de la mécanique quantique, on

peut donc comprendre cette expérience de la manière suivante : initialement, lorsque le

faisceau d’atomes d’argent est émis par la source, l’état quantique |ψ⟩ de chaque atome est

une superposition − c’est-à-dire une combinaison linéaire normée − des états propres “spin

up” | ↑ ⟩ et “spin down” | ↓ ⟩,

|ψ⟩ = 1√
2

(
| ↑ ⟩ ± | ↓ ⟩

)
(14.238)

Le processus de mesure consiste ensuite à faire pénétrer les électrons dans l’appareil de

Stern-Gerlach qui génère champ magnétique vertical B = B ẑ inhomogène. Les électrons

avec un “spin up” sont déviés vers le haut et les électrons avec un “spin down” sont déviés

vers le bas. Comme les taches sont de taille égale, la probabilité que le spin soit observé

dans les états propres | ↑ ⟩ et | ↓ ⟩ doit être égale. La mécanique nous permet de le vérifier.

Ces états propres forment une base orthonormée de l’espace vectoriel C2 associée au spin

des électrons,

⟨ ↑ | ↑ ⟩ = 1 et ⟨ ↓ | ↓ ⟩ = 1 et ⟨ ↑ | ↓ ⟩ = ⟨ ↓ | ↑ ⟩ = 0 (14.239)

Compte tenu des conditions d’orthonormalité, on calcule donc les probabilités d’observer les

états propre de spin l’aide de la formule (14.57),

p↑ = |⟨ ↑ |ψ ⟩|2 =
1

2

∣∣∣ ⟨ ↑ | ↑ ⟩︸ ︷︷ ︸
=1

± ⟨ ↑ | ↓ ⟩︸ ︷︷ ︸
=0

∣∣∣2 =
1

2

p↓ = |⟨ ↓ |ψ ⟩|2 =
1

2

∣∣∣ ⟨ ↓ | ↑ ⟩︸ ︷︷ ︸
=0

± ⟨ ↓ | ↓ ⟩︸ ︷︷ ︸
=1

∣∣∣2 =
1

2

(14.240)

comme pour l’expérience du chat de Schrödinger. L’interprétation du processus de mesure

du spin dans l’expérience de Stern-Gerlach est donc la suivante : en faisant une mesure du

spin, on a une probabilité 1/2 d’observer un spin up ou un spin down. Cette expérience

montre que le résultat d’un processus de mesure en physique quantique est probabiliste.

https://fr.wikipedia.org/wiki/Otto_Stern
https://fr.wikipedia.org/wiki/Walther_Gerlach
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14.4.2 Qubit

Les photons ont deux états propres de polarisation comme le spin des électrons. Ces deux

états propres, notés | 0 ⟩ et | 1 ⟩, foment une base orthonormée de l’espace de Hilbert C2,

⟨ 0 | 0 ⟩ = 1 et ⟨ 1 | 1 ⟩ = 1 et ⟨ 0 | 1 ⟩ = ⟨ 1 | 0 ⟩ = 0 (14.241)

Les états propres | 0 ⟩ et | 1 ⟩ se comportent comme des “bits” en théorie de l’information

classique. Leur équivalent quantique est un état de superposition des états propres | 0 ⟩ et

| 1 ⟩ de la forme,

|ψ ⟩ = α | 0 ⟩+ β | 1 ⟩ (14.242)

où α, β ∈ C satisfont la condition de normalisation du vecteur |ψ ⟩,

α∗α+ β∗β = |α|2 + |β|2 = 1 ainsi ∥ψ∥2 = 1 (14.243)

Le fait de multiplier un vecteur propre par un nombre quantique de norme unité eiϕ ne

change pas l’état physique d’un système. On peut choisir de prendre α ∈ R+. Alors, l’état de

superposition quantique qui encode l’information quantique, aussi appelé un “qubit” s’écrit,

|ψ ⟩ = cos

(
θ

2

)
| 0 ⟩+ eiϕ sin

(
θ

2

)
| 1 ⟩ (14.244)

où 0 ⩽ θ ⩽ π et 0 ⩽ ϕ < 2π. Les angles θ et ϕ déterminent de manière unique les points

(x, y, z) qui se trouvent sur la sphère S2 de rayon unité,

Felix Blochx = sin θ cosϕ et y = sin θ cosϕ et z = cos θ (14.245)

La sphère définie par l’ensemble des qubits (14.244) pour θ ∈ [0, π] et ϕ ∈ [0, 2π) s’appelle

la sphère de Bloch (Fig. 14.9). Felix Bloch a reçu le prix Nobel de physique en 1952 pour

ses travaux sur la résonance magnétique nucléaire.

Figure 14.9 Les qubits |ψ ⟩ se trouvent sur la sphère de Bloch de pôle nord | 0 ⟩ et de
pôle sud | 1 ⟩.

14.4.3 Ordinateur quantique

Ordinateur classique

Ordinateur quantique

En mécanique classique, en faisant circuler une séquence donnée de photons d’état de

polarisation | 0 ⟩ ou | 1 ⟩, qui forment une base binaire, c’est-à-dire des bits, on peut générer

un code binaire. On peut le faire, par exemple, sous la forme d’un octet classique, qui est

un ensemble de huit bits du type 01110010. En mécanique quantique, en faisant circuler une

séquence donnée de photons d’état de superposition de polarisation |ψ ⟩, qui représente une
base infinie, c’est-à-dire des qubits, on peut générer un code en état de superposition. On

peut le faire, par exemple, sous la forme d’un octet quantique, qui est un ensemble de huit

qubits du type ψ1ψ2ψ3ψ4ψ5ψ6ψ7ψ8. Vu que chaque qubit est un état de superposition d’une

base de taille infinie, cela permet de faire un très grand nombre de calculs en parallèle dont

les perspectives sont très intéressantes.

Etant donné que le processus de mesure en mécanique quantique est une projection

irréversible dans l’espace de Hilbert, la lecture d’un code modifie l’information contenue

https://fr.wikipedia.org/wiki/Felix_Bloch
https://fr.wikipedia.org/wiki/Ordinateur
https://fr.wikipedia.org/wiki/Ordinateur_quantique
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dans le code due au processus de mesure des qubits |ψ ⟩ qui les contraint à être dans un

état propre : | 0 ⟩ ou | 1 ⟩. Il n’est donc plus possible d’espionner impunément un code. De

plus, en le faisant on perd l’essentiel de l’information contenue dans le code. L’ordinateur

quantique est donc le nec le plus ultra en termes de cryptographie : c’est en quelque sorte

le paradis pour les banquiers et l’enfer pour les hackers. Il n’est donc pas étonnant que le

développement de ces technologies soit suivi de près par la place financière helvétique.

La réalisation pratique d’un ordinateur quantique présente des défis importants. Il faut

par exemple refroidir ses composants à une température T ≃ 0.01K voisine du zéro absolu.

Le smartphone basé sur un ordinateur quantique n’est donc pas encore pour demain . . .

14.4.4 Paradoxe EPR

La mécanique quantique prédit l’existence d’un phénomène étrange : deux particules

peuvent avoir des états quantiques qui dépendent l’un de l’autre quelle que soit la distance

qui les sépare. Les états qui ont cette particularité sont des états intriqués ou enchevêtrés.

La spécificité de ces états est qu’il existe des corrélations entre les propriétés physiques de

ces particules. En d’autres termes, le résultat d’une mesure effectuée sur la première parti-

cule peut déterminer entièrement le résultat de la même mesure effectuée sur la deuxième

particule quelque soit le résultat de la première mesure. Ce comportement étrange est le

paradoxe EPR qui est l’acronyme d’Einstein, Podolsky et Rosen, les trois physiciens qui ont

discuté les propriétés de ces états intriqués dans un article publié en 1935 afin de démontrer

le caractère incomplet de la mécanique quantique.

Boris Podolsky

Nathan Rosen

John Bell

Einstein n’a jamais cru en l’existence de cette “action fantôme à distance”. Ce paradoxe a

suscité une vive polémique entre Einstein et Bohr. Cependant, après leur mort, l’intrication

a été largement vérifiée sur le plan expérimental. Elle est au centre des discussions philoso-

phiques sur l’interprétation de la mécanique quantique. Les expériences semblent remettre

en cause soit la causalité, soit la localité, soit le réalisme de la localité de la physique. Ceci

dépend toutefois de l’interprétation choisie pour la mécanique quantique.

14.4.5 Intrication quantique

Avant de décrire mathématiquement les états intriqués, il est nécessaire d’introduire la

définition des états séparables. Deux particules sont dans un état séparable si leur vecteur

d’état |Ψ1+2 ⟩ peut être exprimé comme le produit tensoriel des états de superposition |ψ1 ⟩1
et |ψ2 ⟩2 des deux particules,

|Ψ1+2 ⟩ = |ψ1 ⟩1 ⊗ |ψ2 ⟩2 (14.246)

avec

|ψi ⟩i = cos

(
θi
2

)
| 0 ⟩i + eiϕi sin

(
θi
2

)
| 1 ⟩i où i = 1, 2 (14.247)

Les états non séparables sont les états intriqués. Les quatre états d’intrication maximale

d’un système constitué de deux photons dans l’espace de Hilbert C2 ⊗ C2 sont appelés les

états de Bell,

|Φ± ⟩ = 1√
2

(
| 0 ⟩1 ⊗ | 0 ⟩2 ± | 1 ⟩1 ⊗ | 1 ⟩2

)
|Ψ± ⟩ = 1√

2

(
| 0 ⟩1 ⊗ | 1 ⟩2 ± | 1 ⟩1 ⊗ | 0 ⟩2

) (14.248)

Ils forment une base orthonormée des états intriqués à deux photons où les états propres de

chaque photon satisfont les conditions d’orthonormalité,

⟨ 0 | 0 ⟩i = 1 et ⟨ 1 | 1 ⟩i = 1 et ⟨ 0 | 1 ⟩i = ⟨ 1 | 0 ⟩i = 0 où i = 1, 2 (14.249)

Les états intriqués peuvent être utilisés pour la téléportation d’information quantique.

Compte tenu de la formule (14.57), la probabilité d’avoir deux photons de même polari-
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sation lorsqu’ils sont dans des états intriqués de Bell |Φ± ⟩ est,

pΦ± (0, 0) = | (⟨ 0 |1 ⊗ ⟨ 0 |2) |Φ± ⟩|2 =
1

2
|⟨ 0 | 0 ⟩1⟨ 0 | 0 ⟩2 ± ⟨ 0 | 1 ⟩1⟨ 0 | 1 ⟩2|2 =

1

2

pΦ± (1, 1) = | (⟨ 1 |1 ⊗ ⟨ 1 |2) |Φ± ⟩|2 =
1

2
|⟨ 1 | 0 ⟩1⟨ 1 | 0 ⟩2 ± ⟨ 1 | 1 ⟩1⟨ 1 | 1 ⟩2|2 =

1

2

(14.250)

La probabilité d’avoir deux photons de polarisation opposée lorsqu’ils sont dans des états

Alain Aspect

Anton Zeilinger

John Clauser

intriqués de Bell |Φ± ⟩ est,

pΦ± (0, 1) = | (⟨ 0 |1 ⊗ ⟨ 1 |2) |Φ± ⟩|2 =
1

2
|⟨ 0 | 0 ⟩1⟨ 1 | 0 ⟩2 ± ⟨ 0 | 1 ⟩1⟨ 1 | 1 ⟩2|2 = 0

pΦ± (1, 0) = | (⟨ 1 |1 ⊗ ⟨ 0 |2) |Φ± ⟩|2 =
1

2
|⟨ 1 | 0 ⟩1⟨ 0 | 0 ⟩2 ± ⟨ 1 | 1 ⟩1⟨ 0 | 1 ⟩2|2 = 0

(14.251)

Compte tenu de la formule (14.57), la probabilité d’avoir deux photons de même polarisation

lorsqu’ils sont dans des états intriqués de Bell |Ψ± ⟩ est,

pΨ± (0, 0) = | (⟨ 0 |1 ⊗ ⟨ 0 |2) |Ψ± ⟩|2 =
1

2
|⟨ 0 | 0 ⟩1⟨ 0 | 1 ⟩2 ± ⟨ 0 | 1 ⟩1⟨ 0 | 0 ⟩2|2 = 0

pΨ± (1, 1) = | (⟨ 1 |1 ⊗ ⟨ 1 |2) |Ψ± ⟩|2 =
1

2
|⟨ 1 | 0 ⟩1⟨ 1 | 1 ⟩2 ± ⟨ 1 | 1 ⟩1⟨ 1 | 0 ⟩2|2 = 0

(14.252)

La probabilité d’avoir deux photons de polarisation opposée lorsqu’ils sont dans des états

intriqués de Bell |Ψ± ⟩ est,

pΨ± (0, 1) = | (⟨ 0 |1 ⊗ ⟨ 1 |2) |Ψ± ⟩|2 =
1

2
|⟨ 0 | 0 ⟩1⟨ 1 | 1 ⟩2 ± ⟨ 0 | 1 ⟩1⟨ 1 | 0 ⟩2|2 =

1

2

pΨ± (1, 0) = | (⟨ 1 |1 ⊗ ⟨ 0 |2) |Ψ± ⟩|2 =
1

2
|⟨ 1 | 0 ⟩1⟨ 0 | 1 ⟩2 ± ⟨ 1 | 1 ⟩1⟨ 0 | 0 ⟩2|2 =

1

2

(14.253)

Ces résultats statistiques peuvent être interprétés clairement. Premièrement, si les deux

photons sont dans des états intriqués de Bell Φ± ou Ψ±, lorsqu’on mesure leurs états avec

deux détecteurs différents en des endroits différents, l’état de polarisation propre mesuré

sera | 0 ⟩ ou | 1 ⟩ avec une probabilité de pi (0) = pi (1) = 1/2. Deuxièmement, si les deux

photons sont dans des états intriqués de Bell Φ± alors la polarisation mesurée pour chaque

photon sera la même, alors que si les deux photons sont dans des états intriqués de Bell Φ±

alors la polarisation mesurée pour chaque photon sera différente. Les expériences de mesure

de photons intriqués ont été réalisées par Alain Aspect à Paris, Anton Zeilinger à Vienne et

John Clauser à Berkeley. Ils ont reçu le prix Nobel de physique en 2022 pour leurs travaux.

14.4.6 Interprétations de la mécanique quantique

La correlation à distance entre l’état des photons est pour le moins étrange. Elle semble

contredire soit la causalité, soit la localité, soit le réalisme. Si l’état des photons est mesuré

simultanément alors l’information sur ces photons est corrélée pour qu’il y ait cohérence

entre leurs états de polarisation. Ceci ne contredit pas la relativité restreinte puisqu’aucun

photon ne s’est déplacé plus vite que la vitesse de la lumière et qu’il n’y a pas eu échange

d’information entre les photons à une vitesse supérieure à la vitesse de la lumière. La causalité

est donc saine et sauve ! Les deux photons se comportent donc comme les manifestations

d’un seul objet délocalisé dans l’espace. Que dire alors de la localité et du réalisme ? Le

réalisme affirme que l’état du système est une description de ses propriétés. Si on interprète

la mécanique quantique de manière réaliste, alors les expériences sur l’intrication de photons

montrent que la physique est non-locale puisque ces propriétés apparaissent à distance durant

les processus de mesure ayant lieu au sein des détecteurs. En revanche, si l’état d’un système

Nicolas Gisin

Expérience de Gisin

correspond à l’information qu’on possède sur ce système, alors cette information dépend du

référentiel où elle est observée. En particulier, le concept de simultanéité est spécifique au

référentiel. Ainsi, pour comparer simultanément ces informations, il faut le faire de manière

causale par rapport à un référentiel tiers. Cette conclusion ne contredit donc pas la localité,

mais elle se fait aux dépens du réalisme cher à Albert Einstein...

Dans une célèbre expérience, réalisée par Nicolas Gisin à Genève en 1997, deux photons

intriqués ont été envoyés de la gare de Cornavin à Bellevue et Bernex respectivement en

empruntant le réseau de fibre optique de Swisscom (anciennement PTT). Les détections

https://fr.wikipedia.org/wiki/Alain_Aspect
https://fr.wikipedia.org/wiki/Anton_Zeilinger
https://fr.wikipedia.org/wiki/John_Clauser
https://fr.wikipedia.org/wiki/Nicolas_Gisin
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222 CHAPITRE 14. MÉCANIQUE QUANTIQUE

ont pu se faire de manière quasiment simultanée. De manière concrète, la vitesse à laquelle

l’information devrait être transmise entre ces deux mesures est 10′000 fois supérieure à

la vitesse de propagation de la lumière dans le vide. Les résultats de ce expériences sont

conformes à celles d’Aspect, Zeilinger et Clauser.

14.4.7 Epilogue

En guise d’épilogue, je vous propose de faire un petit calcul révélateur. On va démontrer

que le concept d’orbite circulaire de l’électron dans le modèle de Bohr est incohérent car

une telle orbite donnerait paradoxalement lieu à un mouvement en spirale de l’électron qui

terminerait sa course en entrant en collision avec le noyau fixe (Fig. 14.4). La raison de cette

incohérence est due au fait que les lois de l’électromagnétisme prédisent qu’un électron de

charge électrique e sur une orbite circulaire de rayon r ayant une vitesse v et une accélération

centripète a, émet un rayonnement dont la puissance P est donné par la formule de Larmor,

P =
2

3

e2

4πε0c3
a2 =

e2

6πε0c3
v4

r2
(14.254)

A l’aide de l’équation du mouvement de l’électron d’un atome d’hydrogène (14.9) sur une

orbite circulaire, on obtient la vitesse scalaire,

v =

√
1

4πε0

e2

mer
(14.255)

et la puissance rayonnée (14.254) devient,

P =
e2

6πε0c3

(
1

4πε0

e2

mer2

)2

(14.256)

En substituant la vitesse dans l’énergie de l’électron d’un atome d’hydrogène (14.158), elle

se réduit à,

E =
1

2
me v

2 − 1

4πε0

e2

r
= − 1

8πε0

e2

r
(14.257)

La dérivée temporelle de l’énergie (14.257) s’écrit,

Ė =
e2

8πε0

ṙ

r2
(14.258)

La puissance rayonnée est l’opposé de la dérivée temporelle de l’énergie de l’électron,

Mouvement en spirale P = − Ė (14.259)

En substituant la puissance (14.256) et la dérivée temporelle de l’énergie (14.257) dans

l’identité (14.259), on obitent la dérivée temporelle du rayon,

ṙ =
dr

dt
= − e4

12π2ε20m
2
ec

3

1

r2
(14.260)

ce qui implique que,

dt = − 12π2ε20m
2
ec

3

e4
r2dr (14.261)

On obtient le temps de vol t de l’électron en intégrant l’intervalle de temps infinitésimal dt′

du temps initial au temps t, c’est-à-dire du rayon initial de Bohr a0 au rayon nul,

t =

∫ t

0

dt′ = − 12π2ε20m
2
ec

3

e4

∫ 0

a0

r2dr =
4π2ε20m

2
ec

3a30
e4

(14.262)

Compte tenu du rayon de Bohr (14.15), la valeur numérique du temps vol est,

t =
4 · 3.142 · 8.852 ·���10−24 · 9.112 · 10−62 · 33 ·���1024 · 5.293 · 10−33

1.604 · 10−76
s = 1.56·10−11 s (14.263)

ce qui est beaucoup trop court pour un atome stable !

https://home.cern/fr/news/news/physics/atomic-flashback-century-bohr-model
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