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Mécanique classique et mécanique quantique

La mécanique quantique est une généralisation de la mécanique classique nécessaire afin
de rendre compte des phénomeénes physiques a 1’échelle microscopique. Dans la premiere
section de ce chapitre, on va introduire historiquement et conceptuellement la mécanique
quantique. La deuxieéme section est consacrée au fondements de la mécanique quantique. La
troisieme section traitera de la chimie quantique. Finalement, dans la quatrieme section, on
discutera de l'information quantique.

14.1 Introduction historique a la mécanique quantique

14.1.1 Loi de Planck et effet photoélectrique

Je vous propose de commencer par une introduction historique a la mécanique quantique
qui débute au tournant du XX° siecle. En 1900, le célebre physicien allemand Max Planck
introduit la constante fondamentale h qui porte son nom afin de décrire avec succes le
rayonnement du corps noir. Un corps noir est un objet idéal qui absorbe parfaitement tout
le rayonnement qu’il regoit. Cette absorption donne lieu a une agitation thermique qui
provoque I’émission d’'un rayonnement déterminé par la température 7" du corps noir.

Planck a trouvé mathématiquement la loi qui interpole les lois de Rayleigh-Jeans et
de Wien décrivant la densité d’énergie interne w, du rayonnement d’un corps noir de
température T pour de basses et de hautes fréquences v respectivement (Fig. 14.1),
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ou c est la vitesse de propagation de la lumiere dans le vide et kp est la constante de Boltz-
mann. Initialement, Planck cherchait a faire tendre sa constante h vers 0 pour retrouver un
comportement classique, sans succes. . . Cette constante lui a valu le prix Nobel de physique
en 1918. On peut citer comme exemple de corps noir les étoiles, les lampes a incandescence
ou 'univers apres le Big Bang. Le rayonnement cosmologique est le meilleur exemple connu
de rayonnement de corps noir.

En 1905, Albert Einstein s’est inspiré de cette formule et a postulé que I'énergie du
rayonnement F ne prenait que des valeurs discretes et qu’elle était proportionnelle a la
fréquence v des ondes électromagnétiques,

E=hy (14.2)

Il a regu le prix Nobel de physique en 1921 pour cette découverte de I'effet photoélectrique.
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FIGURE 14.1 La loi de Planck interpole la loi de Rayleigh-Jeans a basses fréquences, c’est-
a~dire hv < kT, et la loi de Wien a hautes fréquences, c’est-a-dire hv > kpT.

14.1.2 Modele atomique de Bohr-Sommerfeld

En 1909, Ernest Rutherford réalise au Cavendish Laboratory de 'université de Cambridge
une célebre expérience ou il bombarde une feuille d’or ultra fine de particules «, qui sont des
noyaux d’ *He. Pour la découverte de ces particules, il a recu le prix Nobel de chimie en 1908.
En observant que les particules a ne sont quasiment pas déviées par la feuille, il en déduit
que les atomes sont constituées quasiment entierement de vide. Cette expérience invalide le
modele du “pain aux raisins” de son directeur de Laboratoire, J.J. Thomson, le physicien qui
a découvert I’électron (Fig. 14.2). Rutherford propose en 1911 un nouveau modele nucléaire
de 'atome ou les électrons se déplacent autour d’un noyau formé de protons sous leffet de
la force électrique attractive exercée par le noyau (Fig. 14.2).

FIGURE 14.2 Modele atomique monolithique de Dalton (1803), modele atomique du
“pain aux raisins” de Thomson (1904), modele atomique nucléaire de Rutherford (1911),
modele atomique en orbites quantifiées de Bohr (1913) et modele atomique en orbitales de
Schrodinger (1926).

Ce modele a un défaut majeur : les observations des spectres d’émission des atomes
révelent que le rayonnement émis par les atomes a un spectre discret, c’est-a-dire que
la fréquence de ce rayonnement ne prend que des valeurs discretes caractéristiques pour
chaque type d’atome. Pour remédier a ce probléeme, le physicien Niels Bohr, qui avait été
postdoctorant dans le laboratoire de Thomson a Cambridge et était postdoctorant dans le
laboratoire de Rutherford a Manchester, propose d’améliorer le modele de Rutherford en
postulant que I'énergie des électrons sur les orbites ne peut prendre que des valeurs discretes
ou quantifiées F,, o n € N (Fig. 14.2). Lorsque qu’un électron effectue une transition d’une
orbite d’énergie E,, vers une orbite d’énergie E,, plus faible, il émet ainsi un quantum de
rayonnement électromagnétique, surnommé photon de fréquence spécifique v d’apres 'effet
photoélectrique (14.2) d’Einstein (Fig. 14.3),

E,,— E, =hv ou ng > Ny (14.3)

L’atome d’hydrogene est un systeme a deux corps : le noyau constitué du proton et ’électron.
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FIGURE 14.3 Dans le modele de Bohr, la transition d’un électron d’une orbite d’énergie
E,,, oung € {3,4,5}, vers une autre orbite d’énergie de plus faible E,,, ou n1 = 2, donne
lieu & I’émission d’un photon de fréquence caractéristique v.

Etant donné que la masse du proton m,, est trois ordres de grandeur supérieure a la masse
de I’électron m., la masse réduite u de I’atome d’hydrogene est quasiment celle de ’électron,

mp

= 1836.15 ainsi h=———n~m; (14.4)
Me mp + Me
Le mouvement réduit de 'atome d’hydrogene est donc celui de 1’électron autour du
proton qu’on peut dorénavant considérer comme fixe. L’énergie potentielle d’interaction
électrostatique entre I’électron et le proton est le potentiel électrique de Coulomb,

1 gpqe 1 €2

Vo =

= — 14.5
dreg 7T dmeg 1 ( )

ol g = e < 0 est la charge électrique de 1'électron, ¢, = — e > 0 est la charge électrique du
proton et g est la permittivité électrique du vide. L’énergie potentielle de Coulomb (14.5)
a une structure analogue & P'énergie potentielle gravitationnelle (9.53). En remplagant les
masses par les charges et la constante de la gravitation G par —1/4mw e dans I’énergie po-
tentielle gravitationnelle Vg, on obtient 1’énergie potentielle de Coulomb. Ainsi, par analogie
avec 1'énergie mécanique du mouvement gravitationnel (9.51), 1’énergie de 1’électron dans
I’atome d’hydrogene s’écrit,

1 1 1 €2
j - 24 V= 2 _ - 14.6
5 Me ¥ + Ve 5 Me ¥ o ( )

La force électrique de Coulomb exercée par le proton sur I’électron a la forme suivante,

2

1 gqpqe . 1 e,
Fqo = P = — — 14.7
© " 4dmeg 12 " ( )

dmey 12

ou 7 est le vecteur radial unitaire orienté du proton vers 1’électron. La force de Coulomb
F ¢ a une structure analogue a la force de la gravitation universelle F'¢ ou les masses
ont été remplacées par les charges et la constante de la gravitation G par — 1/4meq. Pour
un électron, qui se déplace sur une orbite circulaire de rayon r a vitesse v et subit une
accélération centripete a. due a la force de Coulomb F'¢ exercée par le noyau, la loi du
mouvement s’écrit,

,UZ

Fc=m.a.=—-—m,— 7 (14.8)

,
En identifiant les forces de Coulomb dans les équations (14.7) et (14.8), on obtient ’équation
scalaire du mouvement de 1’électron,

v 1 €2
v - & 14.9
e = 4dmeg 12 ( )

Dans le modele atomique de Bohr, 1'énergie quantifiée (14.158) de I’électron sur la n® orbite
s’écrit,

= (14.10)
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ou vy, est la vitesse de 1’électron et 7, est le rayon de cette orbite circulaire. Dans ce modele,
léquation quantifiée du mouvement de I’électron (14.9) s’écrit,
2 2
v 1 e
me = =—— — (14.11)
Tn dmeg 12
Bohr quantifie le moment cinétique de 1’électron L,, sur une orbite circulaire en termes des
coordonnées de position 7, et de quantité de mouvement p,,

L, = TnPn = MeUnpTp = nh (1412)

o i = h/2m est la constante de Planck réduite. En 1916, la condition de quantifica-
tion (14.12) du moment cinétique de Bohr est généralisée par Arnold Sommerfeld au cas des
orbites elliptiques. Les équations quantifiées (14.10), (14.10) et (14.12) de Bohr-Sommerfeld
forment un systeme de trois équations a trois inconnues, a savoir r,,, v, et E,. Les solutions
de ce systeme sont les suivantes,

2 2 47T80h2
' =mn"ag="n

mee?
2
b= 1 @ (14.13)
n dreg nh
B Er _ a?mgc? B mee?
"on2 2n2  3272e3 h2n?

ou c est la vitesse de propagation de la lumieére dans le vide, « est la constante de structure
fine de Sommerfeld,

1 e 1
= —~ 14.14
“~ dreg he 137 (14.14)
ap est le rayon atomique de Bohr,
h 4rmegh?
ao = — IO _ 0524 (14.15)
amec mee
et Er est 'énergie d’ionisation de 1’électron,
a’mec? meet
Er=—-FE = = =13.6eV 14.16
! L 2 32722 2 ¢ (14.16)

qui est ’énergie nécessaire pour arracher un électron de l'orbite fondamentale. Bohr a regu
le prix Nobel de physique en 1922 pour son modele, une année apres Albert Einstein. Ce
modele prédit correctement les longueurs d’onde des lignes d’émission spectrale. Compte
tenu des niveaux d’énergie (14.13) pour des photons de vitesse ¢ et de fréquence v,

Cc
= - 14.1
=1 (14.17)

ol A est la longueur d’onde, la formule de Bohr (14.3) donnant I’énergie hv d’un photon
émis lors d’une transition d’un électron d’une orbite d’énergie E,, vers une orbite d’énergie
E,, s’écrit,

1 1 @ 1 1 he
En2 — Enl = —E] (n—% — ’]’L_%) = Emecz (n—% — n—%> = 7 (1418)
On en déduit la formule de Rydberg,
1 1 1
—=Rpy|—=- —= 14.19
v (5 ) —
ou la constante de Rydberg est,
4
amec mee
Ry=—"=—-—5—=1097-10"m™* 14.20
" 2h 8edhic o ( )

Compte tenu de 'inégalité ny > nq, la formule de Rydberg (14.19) donne la série de raies
d’émission de Lyman pour n; = 1. Elle rend compte de la série de Balmer pour n; = 2. La
formule de Rydberg prédit la série de Paschen pour n; = 3. Elle rend compte de la série
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FIGURE 14.4 Series de raies d’émission de Lyman n; = 1, de Balmer n; = 2, de Paschen
n1 = 3, de Brackett n; = 4 et de Pfund n1 = 5.

de Brackett pour n; = 4. La formule de Rydberg donne la série de Pfund pour ny = 5
(Fig. 14.4).

Le modele de Bohr a un défaut majeur : d’apres les lois de I’électromagnétisme, toute parti-
cule chargée qui subit une accélération donne lieu & un rayonnement. C’est le cas des électrons
chargés négativement qui subissent une accélération centripete due a la force électrique at-
tractive générée par leur interaction avec le noyau chargé positivement. Ce rayonnement
conduit a une perte d’énergie et les électrons devraient alors suivre une trajectoire spirale
avant d’entrer en collision avec le noyau. Pour ’atome d’hydrogene H constitué d’un électron
et d’un proton, ce temps de vol est d’environ 10~ s (Fig. 14.5).
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FIGURE 14.5 Dans le modele de Rutherford, pour I’atome d’hydrogene, un électron perd
de I’énergie par rayonnement dii ’accélération centripete de son mouvement orbital ce qui
donne lieu a une trajectoire spirale ou I’électron entre en collision avec le proton apres
environ 107 s,

Comme les atomes d’hydrogene H sont stables depuis la nucléosynthese primordiale qui a
suivi le Big Bang, force est de constater que cela n’est pas le cas! Il faudra donc abandonner
le notion de trajectoire comme le dit si pertinemment Werner Heisenberg : “Le concept de
trajectoire est importé de la physique classique. Il convient de ’abandonner en physique
quantique.” En créant son modele de I’atome, Bohr a cherché a décrire la physique ato-
mique en termes des grandeurs accessibles a l'observation, c’est-a-dire les fréquences des
raies d’émission. Cette recherche des “observables” a donné lieu a la mécanique quantique.
Les deux acteurs majeurs de cette révolution sont le physicien allemand Werner Heisen-
berg et le physicien autrichien Erwin Schrodinger qui ont suivi des chemins complétement
différents. Ils on tous les deux élaborés des théories afin de rendre compte des énergies
quantifiées du modele de Bohr-Sommerfeld.
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14.1.3 Mécanique matricielle

A Page de 23 ans, le jeune Werner Heisenberg s’est rendu en cure pour le traitement de
son asthme sur I'lle de Helgoland dans le mer du Nord. Sur cette ile déserte, il a laissé libre
court & ses réflexions sur le modele atomique de Bohr. Dans un trait de génie, il a réalisé
qu’il pouvait modéliser les raies spectrales d’émission des atomes de maniere matricielle.
En effet, en numérotant les orbites atomiques, les émissions de photons peuvent alors étre
décrits & l'aide d’une matrice ou l'indice de ligne se réfere a l'orbite initiale et 1'indice de
colonne a l'orbite finale. Werner Heisenberg, Max Born et Pascual Jordan, se sont alors rendu
compte que pour décrire la physique atomique, il fallait remplacer les grandeurs usuelles
de la physique classique par des matrices. C’est ainsi qu’est née la mécanique matricielle.
Cette mécanique est non commutative par construction. En effet, si les espaces propres de
matrices sont différents, les matrices ne commutent pas. Heisenberg a montré que ceci est
en particulier le cas pour les matrices associées a la position et a la quantité de mouvement.
La non-commutation des coordonnées de position 7; et de quantité de mouvement p; donne
lieu aux relations de commutation canonique,

[rispjl =rip; — pjri =ihd;; (14.21)

ol % est le nombre imaginaire. En appliquant I'inégalité de Cauchy-Schwarz aux écarts-type
Ar; =1r; — (r;) et Ap; = p; — (p;), Heisenberg lie les variances des coordonnées de position
et de quantité de mouvement aux relations de commutation canonique (14.21),

2 2 1 2
(Ari)? (Ap;)* 2 7 [{lrispi)) (14.22)
Ainsi, il a obtenu les relations d’inégalité ou le principe d’incertitude,
h

qui portent son nom et affirment qu’il y a une incompatibilité de mesure entre les compo-
santes de la position et celles de la quantité de mouvement. Cette incompatibilité se traduit
par des incertitudes Ar; et Ap; sur les mesures simultanées des composantes de la position
r; et de la quantité de mouvement p;.

14.1.4 Mécanique ondulatoire

Erwin Schrodinger, a été fortement influencé par la these de Louis de Broglie qui étudié
le comportement ondulatoire de 1’électron et lui a attribué une longueur d’onde. Ce travail
a valu a Louis de Broglie d’étre le lauréat du prix Nobel de physique en 1929. Schrodinger
était persuadé qu'il fallait trouver une équation qui régisse le comportement ondulatoire de
I’électron afin d’expliquer les niveaux quantifiés du modele de Bohr. Durant I'hiver 1925,
alors qu'il était professeur de 'ETH de Zurich, il s’est rendu en vacances de neige avec 'une
de ses maitresses & Arosa dans les alpes grisonnes. Les abondantes chutes de neige I'ont
contraint a rester au chaud dans son chalet...C’est alors qu’il a appliqué le formalisme de
la mécanique analytique pour en déduire la tres célebre équation qui décrit la dynamique
d’un électron et porte son nom. En mécanique analytique, I’hamiltonien H est la somme
de I’énergie cinétique T et de I’énergie potentielle totale V' alors que le lagrangien L est la
différence de ces énergies,

H=T+V e L=T-V (14.24)

L’action S est définie comme 'intégrale du lagrangien par rapport au temps,
S = / Ldt (14.25)

L’action a donc la méme unité physique que le moment cinétique. Le formalisme de Hamilton-
Jacobi permet de lier la dérivée temporelle de ’action a ’hamiltonien H,

- =H 14.2
5 (14.26)
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c’est ’équation d’Hamilton-Jacobi qui décrit ’évolution d’un systeme. Pour retrouver les
niveaux d’énergies du modele de Bohr, I'idée géniale de Schriodinger a été de décrire le
comportement de ’électron par une fonction d’onde,

Y =g exp(—ip) =pe *¥€C (14.27)
ou 1y = cste, en termes de son action qui est un multiple quantifié de sa phase,
S=hy (14.28)

En inversant la fonction d’onde (14.27), Schrédinger a décrit Paction comme,

S =ihln (w> (14.29)

Yo
En substituant l'action (14.28) dans 1’équation d’Hamilton-Jacobi (14.26), il a obtenu le
résultat suivant,
Yo O ( (U )
—ith——|—)=H 14.30
v o\ (14:30)
qui multiplié par la fonction d’onde v donne 1’équation qui porte son nom,
o4
_inlY _ g 14.31
in 2 = Hy (14.31)

Schrodinger étudie les solutions de cette équations et en extrait les énergies quantifiées du
modele de Bohr : impressionnant ! La mécanique ondulatoire de Schrédinger parait tellement
plus simple que la mécanique matricielle d’Heisenberg! Pourtant, ces deux théories qui
prédisent les mémes valeurs sont complémentaires. Heisenberg recevra le prix Nobel de
physique en 1932 et il sera décerné a Schrodinger en 1933.

14.2 Fondements de la mécanique quantique

La mécanique matricielle et la mécanique ondulatoire sont comme les deux faces d’une
mécanique plus générale appelée la mécanique quantique. Schrédinger et Dirac ont montré
indépendamment cette équivalence et le grand mathématicien hongrois John von Neumann
a proprement formalisé cette théorie sur le plan mathématique. L’équivalence entre ces
théories peut se comprendre de la maniere suivante : Les matrices d’Heisenberg sont des
représentations d’applications linéaires par rapport & une base d’un espace vectoriel abstrait.
Elles ont des valeurs propres et des vecteurs propres. De méme, les opérateurs différentiels par
rapport au temps et a I’espace qui apparaissent dans I’équation détaillée de Schrodinger sont
une généralisation d’applications linéaires qui ont des valeurs propres et des vecteurs propres
dans un espace vectoriel abstrait de fonctions. Pour réconcilier les deux théories, il faut
donc décrire les grandeurs physiques, les observables, par des opérateurs différentiels A qui
agissent sur des vecteurs caractérisant I’état du systéme. Ces vecteurs d’état, notés |v), sont
les fonctions d’onde . Ils appartiennent a un espace vectoriel de dimension infinie appelé
'espace de Hilbert H. Le spectre o (A) des opérateurs A € £ (H), c’est-a-dire 'ensemble
de leurs valeurs propres, représente les valeurs discretes ou continues que peut prendre
'observable A. 11 s’agit par exemple des niveaux d’énergie F,, du modele de Bohr ou n € N
de 'atome d’hydrogene pour I'observable hamiltonien H.

14.2.1 Espace d’Hilbert et vecteur d’état

En mécanique quantique, I’état d’un point matériel, comme un électron par exemple,
est décrit par la fonction d’onde v a valeurs complexes, appelée vecteur d’état et notée
|¥) : R® — C. Les vecteurs d’état prennent comme argument tout point de l'espace &
trois dimensions et ils appartiennent a ’espace vectoriel de Hilbert des fonctions de carré
intégrable, cest-a-dire |[¢) € H = L2 (Rg), comme on le montrera ci-dessous. On peut
définir une base orthonormée continue (non-dénombrable) de vecteurs {|z,y, z) } de l'espace
vectoriel de fonctions R® — H paramétrisée par des coordonnées cartésiennes. D’apres le
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théoreme de représentation de Fréchet-Riesz, une base orthonormée continue de vecteurs
notée {(2',y’, 2'|} peut alors étre associée & I’espace vectoriel dual de fonctions H — R3. Le
produit scalaire des vecteurs de la base et de la base duale satisfait la relation d’orthonor-
malité,

(@' y ey, 2) =6 (2 — 2)8(y — y)d (2 — 2) (14.32)

exprimée en fonction des distributions de Dirac sur les coordonnées définies comme,

1 si 2= 1osioy =
5 — z) = si 2 =u ot 5 — y) = sioy =y
0 si 2/#z 0 si y#y
(14.33)
5+ — 2) = 1 si 2=z
0 si 2/ #z

Dirac a appelé le vecteur |z, y, z) un vecteur “ket” et son dual (x,y, z| un vecteur “bra”. Le
produit scalaire (14.32) est donc un “bra-ket”. Les vecteurs “bra” peuvent étre considérés
comme des vecteurs lignes abstraits et les vecteurs “ket” comme des vecteurs colonnes
abstraits. Compte tenu des distributions (14.33), l'intégration de la relation d’orthonor-
malité (14.32) sur 'espace & trois dimensions est le carré de la norme du vecteur normé

lz,y, 2),

/ dx/ dy/ dz {2y, |z, y,2) = (m,y,2|z,y,2) =1 (14.34)
— 00 — 00 —00

En permutant l'ordre des vecteurs “bra” et “ket” dans le produit scalaire (14.32), on obtient
un “ket-bra” qui est un projecteur dans ’espace de Hilbert H. La somme continue des
projecteurs est I'opérateur identité qui est le projecteur sur ’ensemble de I’espace de Hilbert,

/ dx/ dy/ dz |z, y, 2z, y, 2| =1 (14.35)

La fonction d’onde complexe ¢ (z,y,2) € C évaluée au point (z,y, z) est la représentation
de position du vecteur d’état “ket” |1},

¥ (2, y,2) = (2,9, 2[¢) (14.36)
et satisfait I'identité,
(Wlw,y,2) = (,y, 2|¥)" (14.37)

Le conjugué complexe de la fonction d’onde complexe ¢ (z,y, z) € C évaluée au point (x,y, 2)
est la représentation de position du vecteur d’état “bra” (v|,

¥ (2,9, 2) = (2,9, 2[¢)" = (Yl2,9, 2) (14.38)
Compte tenu du projecteur identité (14.35), le vecteur d’état “ket” [¢)) s’écrit,

/ dz/ dy/ dz |z, y, )z, y, 2|v) (14.39)

A Taide du produit scalaire (14.36), le vecteur d’état ket |¢) est une combinaison linéaire
continue des vecteurs “ket” propres |z,y, z) de la base orthonormée continue,

-/ Z w [ Z a [ Z 42 (2, 2) 2,9, 2) (14.40)

Compte tenu du projecteur identité (14.35), le vecteur d’état “bra” (¢| s’écrit,

(] = / da:/ dy/ dz W]z, y, )z, 9, 2| (14.41)

A Taide du produit scalaire (14.36), le vecteur d’état “bra” (1| est une combinaison linéaire
continue des vecteurs “bra” propres (z,y, z| de la base orthonormée continue,

(] = / dx/ dy/ 20" (2,1, 2) (2,1, ] (14.42)
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Compte tenu des relations intégrales (14.40) et (14.42) et de la relation d’orthonorma-
lité (14.32), la norme au carré du vecteur d’état normé |¢) s’écrit,

WW:Mw:[VM[ @[cmmuwww%a

o0 oo o0
=/ m/ @/ dz o (z,9,2) 2 = 1

ce qui montre que le vecteur d’état normé [1)) appartient a espace de Hilbert H des fonctions
de carré sommable, c’est-a-dire |¢)) € H = L? (R?).

(14.43)

14.2.2 Interprétation statistique de la mesure

La structure probabiliste du processus de mesure en mécanique quantique et I’in-
terprétation statistique qui en découlent sont 1'oeuvre du physicien allemand Max Born
qui a regu le prix Nobel de physique pour ses travaux en 1954. Afin de comprendre ’ori-
gine de cette interprétation statistique, on introduit une base discréte orthonormée infinie
(dénombrable) {|¢:)}i>1 € H de vecteurs “ket” propres associées & un opérateur linéaire
quelconque Aer (H) qui agit dans ’espace de Hilbert H des états. Cette opérateur corres-
pond & une observable quelconque qui décrit une grandeur physique en mécanique quantique.
L’équation aux valeurs propres pour I'opérateur A est,

Algi) = Ao (14.44)

ou A; € R sont les valeurs propres réelles de 'opérateur A. L’ensemble des valeurs propres
A; de lopérateur A constituent son spectre,

o(A) = {A1, As, Ag, ..} (14.45)

Comme les vecteurs de base |¢;) sont normés, le produit scalaire d’un vecteur avec son
conjugué complexe est le carré de sa norme qui vaut,

o =toidon = [ o [y [ dzt wnn)on o) =1 (14.46)
La relation orthonormalité entre un vecteur propre “bra” et un vecteur propre “ket” s’écrit,
ilo) = [ dn [y [ 20t @) 05 mi0.0) = 0y (14.47)

Un vecteur d’état quelconque |¢)) € H est une combinaison linéaire des vecteurs propres de
la base orthonormée,

) = (ild) 16) (14.48)

i>1

ou le produit scalaire d’'un deux vecteur “bra” et d’un vecteur “ket” (¢;|1)) € C est un
nombre complexe,

mw:[>ml¢y[dwmwwwm%a (14.49)

qui satisfait I'identité suivante,
(Ylgi) = (dil)” (14.50)

A Taide de I'équation aux valeurs propres (14.44) et de la combinaison linéaire (14.48), on
en déduit,

AMzZ%MMm:Z%M&W=Z&%MW> (14.51)

Compte tenu du vecteur “ket” (14.40) du vecteur “bra” (14.42), la valeur moyenne réelle
d’une observable A dans un état |¢)) est la forme hermitienne H x H — R de 'opérateur A
agissant sur le vecteur d’état |1) qui s’écrit,

e = wl Al = [ e / Ty / Tl @y ) A ) (yz) (1452)
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A Taide de l'équation aux valeurs propres (14.51) et de lidentité (14.50), la valeur
moyenne (14.52) de 'opérateur A dans I’état |¢) devient,

(A)y = @I A L) =D A (ilth) (o) = D_ (il (diluh) As = D [{0ul)I* Ai (14.53)
i>1 i1 i1
Compte tenu des conditions de normalisation (14.49) et (14.43) pour les vecteurs |i) et ¢;),
on déduit de I'inégalité de Cauchy-Schwarz que,

0 < [olw)* < NIl )1 = 1 (14.54)

De plus, compte tenu de la combinaison linéaire (14.48) et de I'identité (14.50), on en déduit
la propriété suivante,

DGl =D (dilw) (il) = > (dilwy) (Wlga) = @I [ D (il i) | = (Wl =1

i>1 i>1 i>1 i>1
(14.55)
Sur le plan physique, lors d’une mesure, le systéme ne peut étre observé que dans un état
propre |¢;) de la base orthonormée {|¢;)};>1. Les propriétés (14.54) et (14.55) de la norme au
carré du produit scalaire du vecteur |¢) avec le vecteur propre |¢;) permettent d’interpréter
ce résultat comme la probabilité p; (1)) d’observer le systéme dans I’état propre |¢;) lors
d’une mesure 8’1l est initialement dans 1’état |1)),

pi (V) = [gilv)[? (14.56)
qui satisfait alors les deux propriétés,
0<pi(¥) <1 et Y pi(y)=1 (14.57)
i<1

Le processus de mesure est donc un processus irréversible décrit mathématiquement par une
projection d’un vecteur d’état |¢) sur un vecteur propre |¢;) dans lespace de Hilbert H.
Cette projection de la fonction d’onde 3 s’appelle la réduction du paquet d’onde. Sur le
plan physique, 'irréversibilité du processus de mesure signifie qu’apres la mesure, le systéeme
se trouve dans 1’état propre |¢;). Ainsi, si la méme mesure est refaite une seconde fois, le
systéme sera alors observé dans I’état propre |¢;) avec une probabilité p; (¢;) = 1.

La valeur moyenne réelle (14.53) d’une observable A dans un état |t)) est son espérance
quantique qui s’interprete comme la somme des valeurs propres réelles A; pondérées par les
probabilités (14.57),

(A)y = Z pi (V) A; (14.58)

i>1

L’équation aux valeurs propres (14.53) peut étre mise sous la forme suivante,

Ay =AY 1da) (bl | [0) = | D Aildi) (6l | 1) (14.59)

i>1 i>1

Le projecteur P; € L (H) sur le sous-espace propre de 'espace de Hilbert H engendré par le
vecteur propre |¢;) est défini comme,

Pi = |#4) (¢i (14.60)

Compte tenu de I'équation aux valeurs propres (14.53), on en déduit que la somme des
projecteurs est I'opérateur identité qui est un projecteur sur I’ensemble de ’espace de Hilbert

H,
Z P; = Z |9i) (pi] =1 (14.61)

i>1 i>1

A Taide du projecteur (14.60) et de équation aux valeurs propres (14.59), on obtient la
décomposition spectrale de 'opérateur A dans I'espace de Hilbert H,

A= Z A; |di) (il = Z Ai Pi (14.62)

i>1 i>1
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Compte tenu de 'identité (14.50) du produit scalaire, 'opérateur adjoint At A I’opérateur
A est défini par la forme hermitienne,

(9] Alv) = (9| Avp) = (ATgplu) = (| AT ¢)* = (| AT |¢)* (14.63)

ou [¢) et |¢p) € H. A Taide de la décomposition (14.53) du vecteur |¢) dans la base or-
thonormée {|¢;)}i>1 et de 'identité (14.50) du produit scalaire, la forme hermitienne de
Iopérateur A devient,

*

G AL) =37 A (8l o eilv) = [ 3 Af (wlo) (sl 8) (14.64)

i>1 i>1

Par comparaison des formes hermitiennes (14.63) et (14.64), on en conclut que,

(W AT|g) =" A7 (¥|¢:)(¢i] ) (14.65)

i>1

ce qui donne I’équation aux valeurs propres,

ATlg) =" A7 (il ¢) |6) (14.66)

i>1

En comparant les équations aux valeurs propres (14.59) et (14.66), on en déduit que les
valeurs propres A} de I'opérateur adjoint At sont les conjugués complexes des valeurs propres
A; de 'opérateur A. La description des phénomenes physique impose que les valeurs propres
soient réelles,

Aj=ATeR Vix1 (14.67)

Par conséquent, les opérateurs qui décrivent des observables physiques sont hermitiens ou
autoadjoints,

A=A € L(H) (14.68)
Ainsi, la forme hermitienne (14.63) se réduit a,

(| Aly) = (] Alg)* (14.69)

14.2.3 Chat de Schrodinger

Les physiciens ont toujours entretenus des sentiments ambivalents envers les chats. Les
pionniers de I’électrostatique ont récupéré les peaux de leurs félins de compagnies préférés
afin de charger en électricité des baguettes par friction. Erwin Schrodinger ne fait pas excep-
tion a la regle puisqu’il a proposé en 1935 une expérience de pensée particulierement cruelle
mettant en scéne un chat. L’expérience que Schrodinger a proposée est la suivante : un chat
est enfermé dans un boite qui contient une source radioactive. Si un compteur Geiger détecte
un certain seuil critique de radiation, un dispositif mécanique active la chute d’'un marteau
qui brise une fiole contenant du cyanure. Le cyanure se répand alors dans la boite et tue
instantanément le chat. La probabilité que la radiation émise par la source radioactive soit
suffisante pour atteindre ce seuil critique est de 0.5. La probabilité que le chat reste vivant
est donc égale & celle qu’il meurt, ¢’est-a-dire pyivant (chat) = pmort (chat) = 0.5. On peut le
comprendre de la maniére suivante, le vecteur d’état normé du chat |chat) est la combinaison
lindaire (14.48) des vecteurs états propres |vivant) et |mort) dans U'espace de Hilbert H du
chat,

|chat) = \% <|vivant> + |mort>) (14.70)

ou la base orthonormée a deux états satisfait les relations d’orthonormalité,

(vivant|vivant) = (mort|mort) = 1 et (vivant|mort) = (mort|vivant)* =0 (14.71)

Chat de Schrodinger
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Compte tenu de la définition (14.57), lors du processus de mesure qui consiste & ouvrir la
boite, les probabilités que le chat soit trouvé dans un état |vivant) ou un état |mort) sont,

= |{viv h 1 1
Dvivant (chat) = |(vivant|c at>|2 =3 |(vivant|vivant) + (viv&mt|mort)|2 =—
(14.72)

1 1
Pmort (chat) = |(mort|chat)|* = = |(mort|vivant) + (mort|mort)|? = 3

Apres avoir effectué la mesure, ¢’est-a-dire apres avoir vérifié I’état propre du chat en ouvrant

[\

la boite, il se trouve dans I’état propre |vivant) ou |mort) avec certitude. Le processus
de mesure revient ici & examiner le chat pour voir dans quel état propre il se trouve. Ce
processus est irréversible. Une fois qu’on a obtenu l'information sur 1’état du chat, on ne
peut pas revenir en arriere. Erwin Schrédinger était-il un psychopathe ? Clairement, non ! 11
cherchait a mettre en évidence d’une part les lacunes de l'interprétation de Copenhague de
la mécanique quantique, proposée par Bohr, Heisenberg et Born, et a illustrer d’autre part
le processus de mesure. Selon l'interprétation de Copenhague, le chat est a la fois vivant et
mort. Pourtant, en effectuant la mesure de 1’état du chat, c’est-a-dire en ouvrant la boite,
on peut clairement observer que le chat est soit vivant, soit mort. Selon 'interprétation
relationnelle de la mécanique quantique, proposée par Carlo Rovelli en 1996 et popularisée
dans son ouvrage intitulé “Helgoland”, publié en 2020, le vecteur d’état du |chat) encode
I'information sur I’histoire de 'interaction du chat avec son environnement. Le processus
de mesure qui est effectué en ouvrant la boite revient a actualiser cette information, ce qui
parailt plus raisonnable...

Le concept d’information est clé en physique. Schrodinger I’avait bien saisi. Il avait aussi
bien compris que l'essentiel de I'information faisant la beauté et la richesse de 'existence
humaine échappe hélas au champ d’investigation de la science. Dans ouvrage intitulé “La
nature et les grecs” publié en 1954, il affirme la chose suivante : “Je suis stupéfait de découvrir
que notre vision scientifique du monde est vraiment déficiente. Elle nous donne beaucoup
d’informations précises, ordonne magnifiquement bien nos expériences du réel, mais reste
terriblement muette et tristement étrangere a nos coeurs et a tout ce qui compte réellement
pour nous. Elle ne peut ni nous renseigner sur le rouge ni sur le bleu, ni sur 'amer ni sur le
sucré, ni sur la douleur ni sur le plaisir. Elle ne connait rien de la beauté ou de la laideur, du
bien ou du mal, de Dieu ou de I’éternité. La science prétend parfois répondre & des questions
dans ces domaines, mais les réponses sont treés souvent si stupides que nous ne sommes pas
enclins a les prendre au sérieux.”

14.2.4 Observables physiques

Afin de déterminer la structure des observables physiques, on commence par une équation
d’onde pour la fonction d’onde ¢ (v, t) = ¢ (z,y, 2, t),

1 82'¢) (Ta t) 2
—0—27+V Y (r,t) =0 (14.73)
ou l'opérateur scalaire lapalacien est le carré de 'opérateur vectoriel gradient,
0? 0? 0?
V=V - V=_——+ -+ (14.74)

or2  0y?2 022
La solution complexe générale de 1’équation d’onde (14.73) est la fonction d’onde,
¥ (r,t) = hoer®T=ED e C (14.75)

En substituant la solution générale (14.75) dans 1’équation d’onde (14.73), on obtient la
relation suivante,

E? - p?c* =0 (14.76)
qui décrit ’énergie d’une particule relativiste de masse nulle. Le rayonnement d’une onde

électromagnétique est constitué de photons qui sont des particules relativistes de masse
nulle. Par conséquent, la fonction d’onde (14.75) décrit I’état quantique des photons. Dans
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I’espace a trois dimensions a un temps donné, I’équation aux valeurs propres d’un opérateur
A est,
Ay (r,t) = Ay (r,t) (14.77)

ol A € R est la valeur propre de Popérateur A € £ (H) si la fonction d’onde ) (r,t) € C est
une fonction propre de cet opérateur. Pour des photons, la fonction d’onde générale devient

Y (r,t) = peFT=wb e C (14.78)

ou k est le vecteur d’onde du photon et w est sa pulsation appelée aussi sa fréquence
angulaire. En substituant la solution particuliere (14.78) dans 1’équation d’onde (14.73), on
obtient la relation de dispersion,

w?— kK ? =0 (14.79)

14.2.5 Quantité de mouvement

La quantité de mouvement décrit une variation spatiale rectiligne, c’est-a-dire un mouve-
ment de translation dans I'espace. Afin de déterminer I'opérateur linéaire quantité de mou-
vement p € L (H), on fait donc agir Vopérateur de dérivée spatiale, c’est-a-dire le gradient,
sur la fonction d’onde générale (14.75),

Vi (r,t) = 5 pto et P ED = S (r,1) (14.80)
qui est remise en forme comme,
—ihV Y (r,t) =pi(r,t) (14.81)

L’équation aux valeurs propres (14.77) de lopérateur vectoriel quantité de mouvement
s’écrit,
pi(r,t)=pe(r,i) (14.82)

En comparant les équations aux valeurs propres (14.81) et (14.82) pour la quantité de
mouvement, on en déduit 'opérateur quantité de mouvement en mécanique quantique,

p=—ihV (14.83)

En appliquant 'opérateur quantité de mouvement (14.83) sur la fonction d’onde du pho-
ton (14.78), on obtient le résultat suivant,

P (rt)=—ihV (% ei(’“"’—wt)) ~ hk (z/)o ei(’“‘—wt)) = hk (1) (14.84)

En comparant les équations aux valeurs propres (14.82) et (14.84) de 'opérateur quantité
de mouvement pour un photon, on en conclut que la quantité de mouvement d’un photon
est quantifiée,

p=hk (14.85)

14.2.6 Hamiltonien

L’énergie décrit une variation temporelle, c’est-a-dire une translation dans le temps. Afin
de déterminer 'opérateur linéaire hamiltonien H € £ (H) associé a I’énergie E, on fait donc
agir I'opérateur de dérivée temporelle, sur la fonction d’onde générale (14.75),

9 _ tpr-m0 _ _ L
5 (r,t) hE¢O en ha(nt) (14.86)
qui est remise en forme comme,
0
z’haw(r,t) =E¢(r,t) (14.87)

L’équation aux valeurs propres (14.77) de 'opérateur scalaire hamiltonien s’écrit,

H(r,t) = Ev (r,t) (14.88)
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En comparant les équations aux valeurs propres (14.87) et (14.88) pour I'hamiltonien, on en
déduit 'opérateur hamiltonien en mécanique quantique,

.\ 0
H=ihg (14.89)

En appliquant opérateur hamiltonien (14.2.10) sur la fonction d’onde du photon (14.78),
on obtient le résultat suivant,

Hap(r,t) = m% (wo e“’“'r—wﬂ) — hw (wo e“k"‘—wt)) = hw (r,1) (14.90)

En comparant les équations aux valeurs propres (14.88) et (14.90) de 'opérateur hamiltonien
pour un photon, on en conclut que I’énergie d’un photon est quantifiée,

E=hw (14.91)

ce qui est l'effet photoélectrique (14.2) d’Einstein.

14.2.7 Opérateur position
L’équation aux valeurs propres de ’opérateur position en représentation de position s’écrit,
T (r,t) =7 (r,t) (14.92)

On en déduit 'opérateur position en mécanique quantique,

p=ri (14.93)

ot 1 est le projecteur identité dans ’espace de Hilbert H.

14.2.8 Relations de commutation canoniques

Les relations de commutation canoniques sont obtenues en commutant ’ordre des compo-
santes cartésiennes des opérateurs de position (14.93) et de quantité de mouvement (14.83),
. . 5 . S .0
Fo=2; - F=ux;1 et pj=&;-p=—ihs— (14.94)

6a:j

dans leur action sur la fonction d’onde ¢ (v,t) = ¥ (z1, x2, x3,t),

[Fi D] ¥ (21, T2, 23, 1) = 75 Dy (1, T2, T3, 1) — Dj 7 (21, T2, 3, 1)

— —inlw Y (21,32, 3,1) O (3¢ (21,72, 73,1))
- ' 8xj 8wj (1495)
o Om; .
=ih—— ¢ (v1,22,23,t) = i hdg; 1 (1,22, 23,1)
81‘]'

Ainsi, les relations de commutation canonique s’écrivent,

14.2.9 Principe d’incertitude d’Heisenberg

La variance de 'observable A est la valeur moyenne du carré de la déviation par rapport

a la valeur moyenne (A),
(AA)? = < (A — (4) i)2> (14.97)

En écrivant le valeur moyenne comme une forme linéaire (14.52) du vecteur d’état i) et en
tenant compte du fait que I'opérateur A — (A) 1 est hermitien (14.69), on obtient le résultat
suivant,

(AA)? = <¢‘ (A —(A) 1)2 ‘ ¢> - < (A —(A) i) ¢‘ (A —(A) i) ¢> (14.98)
Ainsi,

(AA)? = H (A — (A) i) " H (14.99)
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L’inégalité de Cauchy-Schwarz pour le produit des variances des composantes de position et
de quantité de mouvement s’écrit,

(ari? ) =| (i~ 0 1) 0| || s — o D e[| (14.100)
> @l (= G0 2) | (s — 6 1) 0] = (G~ 1) (b — )2
Cette inégalité est remise en forme de la maniere suivante,
(Ari? (Ap)* > | as) — (5 0| (14.101)
De plus, I'inégalité,
(ribs) — ) o) | = | (45:05) — (0 (6)) | (14.102)

et les identités,

(Fi) = (F)" et () = (B;)" et (pj i) = (Fipj)" (14.103)
permettent d’établir ’égalité,

PN N ~ 2 1 A ~ ~ A A\ % A\k A\ %k 2

(1 () = () ) | = | 55 (Gidid = G i) = i) + )" (6)7) |

Ly, .

— Z’<ripj>_ (Dj 74)

Ainsi, compte tenu des relations de commutation canoniques (14.96) et des relation (14.102)-
(14.104), I'inégalité de Cauchy-Schwarz (14.101) devient,

, (14.104)

2 1 o o
= Z’%Pj—%‘?“i)

’ = % ‘ ([7i,D4]) ‘2 = h2 0ij (14.105)

vy
La racine carrée de I'inégalité de Cauchy-Schwarz (14.105) donne le principe d’incertitude
d’Heisenberg, aussi appelé les relations d’inégalité d’Heisenberg,

Ces relations peuvent s’interpréter de la maniere suivante : 'incompatibilité de mesure entre
les mémes composantes des observables de position et de quantité de mouvement, due au
fait que leurs espaces propres sont différents, donne lieu a des incertitudes de mesure lors
d’une mesure simultanée dont le produit est toujours supérieur a 7/2.

Ly
(Ar) (Apy)* > | iy = B 72)

14.2.10 Equation de Schroédinger

En mécanique classique, I’énergie mécanique d’un point matériel de masse m est décrit
comme la somme de l’énergie cinétique 7" du centre de masse et ’énergie potentielle V
c’est-a-dire,

p?
E= o +V(r) (14.107)
D’apres le principe de correspondance établi par Niels Bohr, les fonctions classiques sont
les valeurs propres des opérateurs quantiques. Pour effectuer la transition de la mécanique
classique vers la mécanique quantique, on peut donc remplacer ’énergie mécanique E par
l'opérateur hamiltonien H , la quantité de mouvement p par I'opérateur quantité de mou-
vement P et 'énergie potentielle V (r) fonction de la position par I’énergie potentielle 1%

fonction de 'opérateur position #,
E—-H e pop e V(r)=V(#) (14.108)
Par conséquent, en appliquant le principe de correspondance & 1’énergie mécanique (14.107)

on obtient une équation opératorielle pour I’hamitonien d’un point matériel,

A2
- R
H=—+V(7) (14.109)

Hermann Schwarz
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Compte tenu des définitions de 'opérateur quantité de mouvement (14.83) et de 'opérateur
hamiltonien, ’équation opératorielle (14.160) devient,
i h— = —— V(# 14.110
iho 5 VT VI(7) ( )

En faisant agir I’équation opératorielle (14.110) sur la fonction d’onde 9 (7, t) € C, on obtient
I’équation de Schrédinger a valeurs complexes,

2D I Gy ) v (@) ) (14.111)

De maniere équivalente, en faisant agir ’équation opératorielle (14.110) sur le vecteur d’état
|1)) € H, on obtient I’équation de Schrodinger & valeurs dans l'espace de Hilbert,

Loy K R

14.2.11 Moment cinétique

Le moment cinétique décrit une variation spatiale angulaire, c’est-a-dire un mouvement
de rotation dans I’espace. En physique classique, le moment cinétique est le produit vectoriel
de la position et de la quantité de mouvement,

L=rxp (14.113)

D’apres le principe de correspondance, pour effectuer la transition de la rotation classique
vers la rotation quantique, on peut donc remplacer la position r par 'opérateur position #, la
quantité de mouvement p par 'opérateur quantité de mouvement p et le moment cinétique
L par l'opérateur moment cinétique f},

L=#xp (14.114)

Compte tenu des opérateurs quantité de mouvement (14.83) et position (14.93), 'opérateur
moment cinétique (14.114) devient,

L=—iirxVv (14.115)
A T’aide du vecteur position en coordonnées sphériques,
r=rf¢ (14.116)

et du gradient en coordonnées sphériques,
~1 0 ~ 1 0

v=rl st 2,

or r 00 ¢ rsinf ¢ (14.117)

on exprime 'opérateur moment cinétique (14.115) dans le repere sphérique,

N S B IR L I WY S AR .

Pour caractériser ’amplitude de rotation, on détermine le carré de 'opérateur moment
cinétique (14.118) qui s’écrit,

i b= (6 2) (6 2) _ne(6- 9. (6L 2
L"=L-L=-n (¢89) <¢89> n <esin9 8¢> (osinﬁ 8<Z>>

5 s 5 (14.119)
2 2 — . ) R — 2 ) —_— . 2 —_—
T\ @ sno95) " <gsin9 a¢>> <¢ae>
Les dérivées angulaires partielles des vecteurs unitaires (5.14) s’écrivent,
2 o (14.120)
900) o o M:fsinf)r‘(ﬂ,gﬁ)fcos@é(e,qﬁ)

90 ¢
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Ainsi, le carré de I'opérateur moment cinétique devient,

. 0? 1 0 cosf 0
2 _ _p2( 9 i - 14.121
Lr==h (ae? %0 062 T sme 30) (14.121)

Compte tenu de l'identité opératorielle,

1 0 0 cosf 0O 0?
Snd 90 (Sme aa) sn0 96 T 962 (14.122)
le carré de I'opérateur moment cinétique se réduit a,
- 1 0 0 1 92
L= — = 0 — 14.12
<sin9 90 <Sm ae> T nZe a¢2> (14.123)

Il faut encore caractériser I'orientation de la rotation. A I'aide du vecteur position en coor-
données cylindriques,

r=pp+z2 (14.124)

et du gradient en coordonnées cylindriques,
0 8
V =
p + cb 3 ¢

on obtient la composante verticale de opérateur moment cinétique (14.115),

L.=2-L=—ihz- (pp+;/£)x(p/§/+¢ % A):-m (14.126)

14.2.12 Relations de commutation du moment cinétique

(14.125)

Les composantes cartésiennes de opérateur moment cinétique (14.114) s’écrivent,

Compte tenu des relations de commutation canoniques (14.96), on déduit le commutateur
entre les composantes de 'opérateur moment cinétique L, et L,

[Z/vay] = [(fypz — 7y ﬁy) 5 (fz Do — T f)z)]

A A o o (14.128)
= [ry Pz, T2z px] - [rypzvrm pz] - [Tz Dy,Tz px] + [rz DPy:Tx pz]

Compte tenu des relations de commutation canoniques (14.96),

[yﬁzafzpw] yﬁz"ﬁzﬁw_fzﬁw'ﬁyﬁz:'ﬁyﬁzﬁzﬁw_Tyrzpzpw—r [ fz]ﬁw—_ihrypw
[ ﬁzvfzpz] ﬁzf’zﬁz - 72az:ﬁzf' ﬁz :13272 fmﬁz - pzrmr pz :ﬁz [72 77293“32 =0
y Yy Yy Yy )
['szyﬂ"zp:c] = szy sz:c - szx szy = szypx ry, — rzpacpy T, =", [ yaf)aﬁ] 7, =0
[ zﬁyvrwpz] zpyrwpz_ T:vpzrzpy:rasrzpzpy_ Tmpzrzpy:rr [fzaﬁz]ﬁy th:rﬁy
(14.129)

le commutateur (14.128) se réduit a

[Ly, Ly) = i h(Fy py — 7y Pu) =i h L. (14.130)

Comme les composantes cartésiennes de 'opérateur moment cinétique (14.127) sont liées
par une permutation cyclique des coordonnées cartésiennes r — y — z — x, la permuta-
tion cyclique des indices dans la relation de commutation (14.130) donne trois relations de

commutation,

[Lo,Ly)=ihL., ou  LyL,=L,L,+ihkL,
Ly, L.]=ihL, ou L,L.=1L.L,+ihL, (14.131)
[L.,L,)=ihl, ou  L.L,=1L,L.+ihL,
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L’opérateur moment cinétique au carré s’écrit en composantes cartésiennes,
=L L=L2+L2+1? (14.132)

Compte tenu des relations de commutation (14.131), on déduit le commutateur entre les
opérateurs L2 et Ly,

. R L (14.133)
—LyLyLy—ihlyL.— LyLyL,—inl.L,

x
bbbt ihde by — Db et ihLy L =0
La permutation cyclique des indices + — y — 2z — =z dans la relation de commuta-
tion (14.133) donne trois relations de commutation,

(L2, L,)=0 et [L*L,J]=0 e [L*L.]=0 (14.134)
Les opérateurs d’échelle pour le moment cinétique sont définis comme,
Ly=L,+iL, e L =1L,—il, (14.135)
Compte tenu des relations de commutation (14.131) et des opérateurs d’échelle (14.135), on
obtient les relations de commutation suivantes,
(L., Lyl =L, L) +ill., L)) =ihLy+hl,=hL,

. P N R . (14.136)
L,,L,)—i[L,,Ly)=ihL,— hlL,=—hL_

=

&
‘bw
Il

14.2.13 Nombres quantiques associés a la rotation

La fonction d’onde liée & la rotation 1 m,, (6, ¢) est exprimée en coordonnées sphériques
0 et ¢ en fonction des nombres quantiques ¢ et m, comme on va le démontrer dans cette
section. L’équation aux valeurs propres de la composante verticale de I'opérateur moment
cinétique (14.126) s’écrit,

. 0
L. Yem, (0,0)=—ih 7 Vo,m, (0,0) = L, e, (0, 9) (14.137)

La solution de cette équation est la fonction d’onde,
Ve, (0,0) = vgeh =9 (14.138)

Etant donné que 'angle azimutal ¢ € [0,27), la fonction d’onde (14.138) est équivalente &
la fonction d’onde,

Ve, (0,0) =g et =027 (14.139)

L’identification des solutions (14.138) et (14.139) impose la condition,

Lz

e Hm =1 (14.140)
qui est satisfaite si la composante verticale du moment cinétique est quantifiée,
L, =hmy (14.141)

ou my € Z est le nombre quantique magnétique qui caractérise l'orientation de la rotation.
Compte tenu de la valeur propre (14.141), ’équation aux valeurs propres (14.137) devient,

L um, (0,6) = hme bem, (6, 6) (14.142)

La valeur moyenne du carré de I'opérateur moment cinétique (14.132) s’écrit,
Fo\ /72 ) ) N ) )
(L7) = (L3) + (Ly) +(L3) ou (Ly) =0 et (L7) >0 (14.143)
La valeur moyenne de la composante verticale de l'opérateur moment cinétique
s’écrit (14.142),
(L?) = h?m? (14.144)

z
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Compte tenu de la relation (14.144), 'inégalité (14.143) devient,
(L?) = (L2) = (L%) = I’m} >0 (14.145)

Par conséquent, le nombre magnétique m, se trouve dans un intervalle borné inférieurement
et supérieurement par I'inégalité (14.145). Afin d’en rendre compte, on introduit le nombre
quantique azimutal ¢ € N qui caractérise 'amplitude de rotation. Ce nombre est associé
au carré de I'opérateur moment cinétique et défini comme la borne supérieure positive du
nombre magnétique my,

£ = max (Jmy|) (14.146)

Ainsi, les nombres quantiques azimutal £ € N et magnétique m, € Z satisfont I'inégalité
suivante,

—0<mp< L (14.147)

A Taide des relations de commutations (14.136) et de I’équation aux valeurs propres (14.142),
on obtient le résultat suivant,

Lol tbom, (6,0) = (L L.+hL, ) Doy (0,8) = Fi (mg + 1) (L Dom, (6, ¢)) (14.148)
L’équation aux valeurs propres valeurs propres (14.142) pour my + 1 s’écrit,

[A’z we,me-i-l (97 ¢) =h (mf + 1) wé,me-‘rl (9’ (b) (14'149)

On en conclut donc que P'opérateur d’échelle ﬁ+ permet de passer de la fonction d’onde
Ye,m, (0,¢) ala fonction d’onde ¢ m,+1 (0, @),

j;-i- ¢€,mz (95 ¢) = Clmp+1 ¢Z,mz+1 (9, Qb) (14.150)

Ol Cgm,+1 est une constante de normalisation. En vertu de l'inégalité (14.147), le nombre
quantique my ne peut pas étre supérieur au nombre quantique ¢. Par conséquent, pour
mye = £, la relation (14.150) devient,

Ly vee(6,6) =0 (14.151)

Compte tenu des opérateurs d’échelle (14.135) et de la relation de commutation, on obtient
I’identité opératorielle,
by = (Lo—ik,) (Le+il)) =12+ B2+ (Lo by — L, L) = £2+ 13 - n.
(14.152)

A Taide de cette identité opératorielle, 'opérateur moment cinétique au carré (14.132) peut
étre entierement exprimé en termes des opérateurs L,, L4 et L_ comme,

P=12+12+12=L_Ly+hLl.+12 (14.153)

Compte tenu de la condition (14.151), I’équation aux valeurs propres pour le carré de
I’opérateur moment cinétique s’écrit,

L2400 (0, 0) = (ig fhi,+1 L) Ve (0,6) =L, (ﬁz T hi) bee(0,0)  (14.154)

Au vu de 'équation aux valeurs propres (14.142) évaluée en m = ¢,

Lotbos (0,0) = hlap e (0, 0) (14.155)
I’équation aux valeurs propres du carré de I'opérateur moment cinétique (14.154) devient,
L2y (0,6) = B2C (£ +1)ee (6, 6) (14.156)

14.3 Chimie quantique

14.3.1 Ensemble complet d’observables compatibles

Un ensemble d’observables compatibles, ou qui commutent, souvent abrégé ECOC, est
une ensemble d’observables qui satisfont deux conditions :

Pauli et Bohr
toupie tippe-top


https://fr.wikipedia.org/wiki/Toupie_tippe-top
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1. Les observables commutent toutes entre elles : leurs commutateurs sont nuls.

2. Leurs espaces propres sont égaux : il existe une base orthonormée unique de vecteurs
propres communs a ’ensemble des observables qui décrit completement 1’état.

Etant donné que les observables d'un ECOC commutent, elles sont compatibles. On peut
ainsi les mesurer simultanément, contrairement a la position et la quantité de mouvement.
Les vecteurs d’état faisant partie de la base de TECOC sont entierement caractérisés par les
valeurs propres Ay, ..., A, des n opérateurs A, --- , A, qui sont les observables de 'ECOC.

L’exemple le plus célebre d’ECOC, qu’on examinera dans la section suivante, est celui qui
décrit la dynamique de ’électron dans un atome d’hydrogene. L’hamiltonien H , Popérateur
moment cinétique au carré L2 etla composante vertical du moment cinétique L, de l'électron
forment un ECOC si on ignore le spin de I’électron.

[H,L]=0 et [H,L)=0 e [L*L.]=0 (14.157)
On montrera que les vecteurs |n, £, m) de la base orthonormée de cet ECOC ou les fonctions
d’ondes 1y, ¢,m, sont indicés par le nombre quantique principal 7, le nombre azimutal ¢ et le
nombre magnétique m.

14.3.2 Atome d’hydrogeéne

Par analogie avec ’énergie mécanique du mouvement gravitationnel (9.50), I’énergie de
I’électron dans ’atome d’hydrogene s’écrit,
p? L? p? L? 1 e?

E - —_— V = — J—
2m, + 2mr? +Ve 2 + 2mer?  4meg T

(14.158)

ol V¢ est énergie potentielle de potentiel de Coulomb (14.5) et p,. est la composante radiale
de la quantité de mouvement. Pour effectuer la transition de la mécanique classique vers la
mécanique quantique, on peut remplacer ’énergie mécanique F par I'opérateur hamiltonien
H , la composante radiale de la quantité de mouvement p, par 'opérateur p,, et 1 par le
projecteur identité 1,

E—H e p-—p e 11 (14.159)

Par conséquent, en appliquant le principe de correspondance & ’énergie de 1’électron (14.159)
on obtient une équation opératorielle pour I’hamiltonien de I’électron au sein de l’atome
d’hydrogene,

R ~2 £2 1 2
- Pr 4 (14.160)
'

2me  2mer?  4meg

A Paide du gradient en coordonnées scalaires (14.117), opérateur de quantité de mouvement
radiale p,. s’écrit,
0
ﬁT:ﬁ(ﬁ-ﬁ):—ihr‘(f«V):—ihﬁa— (14.161)
r

Compte tenu des opérateurs (14.83) et (14.161) et du gradient en coordonnées
sphériques (14.117), le carré de l'opérateur de quantité de mouvement radiale a pour expres-

sion,
g0 10 -~ 1 0 0
2 =p-p,=—h|F— - = — ) 7= 14.162
Pr =P Pr h <r6r+9r80+¢rsin98¢) (r8r> (14.162)
Les dérivées partielles du vecteur unitaire radial (5.14) s’écrivent,
or (0, ¢) or0,6) 5 or0,¢) _ . 45
S =0 i =000.0) b =sm0B(9)  (14.163)
Ainsi, le carré de l'opérateur quantité de mouvement radiale devient,
9 290 h% 0 0
2 g2 Y [ R 2 Y
pr=—h (87“2 T 8r> r2 or <7" 87") (14.164)

Comme le carré de 'opérateur quantité de mouvement radiale (14.164) ne dépend que de la
coordonnée sphérique radiale r et que les opérateurs moment cinétique au carré (14.2.11) et
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moment cinétique radial ne dépendent que des coordonnées sphériques angulaires 6 et ¢, ils
commutent,

7, L7 =0 et [p2,L.]=0 (14.165)

T

Compte tenu de ’hamiltonien de 1’électron (14.160) dans un atome d’hydrogene et des
relations de commutation (14.134) et (14.165), on obtient les relations de commutation,

[H,I?]=0 et [H,L,]=0 (14.166)

On en conclut que ’ensemble des opérateurs {fI , I:Q, iz} sont des observables compatibles
qui forment un ECOC. Le nombre quantique associé a I’opérateur Hamiltonien est le nombre
quantique principal n. Compte tenu du fait que le nombre quantique principal n rend compte
du mouvement radial et du mouvement angulaire de 1’électron, décrit par le nombre quan-
tique azimutal ¢, le nombre quantique principal doit étre supérieur au nombre quantique
azimutal,

nzl+1 ainsi n € N* (14.167)
Dans un état stationnaire ou les grandeurs physiques sont indépendantes du temps,

I’équation aux valeurs propres de ’hamiltonien de 1’électron, appelée I’équation de Schrodin-
ger stationnaire s’écrit,

Hppim, (1,0,6) = En Y tm, (1.0, 0) (14.168)

ou E, est le niveau d’énergie de la n° couche atomique. La fonction d’onde de 1’électron se
factorise en une partie radiale R,, (r) et une partie angulaire Yy ,,,, (0, ¢),

djn,&me (7“, 0, d)) = Ry (T) Yim, (9, ¢) (14.169)

La partie angulaire Yy ., (6, ¢), appelée harmonique sphérique, est solution des équations
aux valeurs propres (14.156) et (14.142),

L2 Yi.m, (0,0) = B2 (€ me (0,
iy, ,Z(t9 ¢) = h*L(L+1) Yom, (0,0) (14.170)

L. Yim, (0,0) = hmg Yem, (0,9)
Compte tenu de 1’équation aux valeurs propres du carré de l'opérateur moment
cinétique (14.156) et de 'hamiltonien (14.160), en substituant ’opérateur quantité de mouve-

ment radiale au carré (14.164) et la fonction d’onde (14.169) dans ’équation de Schrédinger
stationnaire (14.171) et en divisant par ’harmonique sphérique Yy ., (6, ¢), on obtient,

< B9 ( ) 0 > MG 62> Rus(r) = En Rug(r)  (14.171)

_ (2L _ e
2mer2 Or or 2mr? 4meg T

On peut montrer que la partie radiale R, (r) qui satisfait D'équation aux valeurs
propres (14.171) s’écrit,

2 3 (n — 0 — 1)' (26+1) 2 2r ‘ __r_
= —) ——F—F L z — nag 14.172
B (r) \/(na0> 2n(n+0) ol ("ao) (nao) ¢ (14.172)

ou ag est le rayon de Bohr et les fonctions Lngf';i)l (fgo) sont les polynoémes de Laguerre
généralisés,
- k
() _ %t d —x, k+ . _ 2
Ly (x) = o dk (e *akte) ol T = (14.173)

k=n—{f—1et a=20+1. Les états de ’électron qui sont liés au noyau sur les différentes
couches électroniques ont une énergie négative quantifiée F,, qui est un multiple de I’énergie
d’ionisation, comme dans le modeéle de Bohr-Sommerfeld (14.13),

E,=——% (14.174)

En substituant le carré de 'opérateur moment cinétique (14.123) et la composante verticale

T
n=2£=0

Partie radiale

Harmoniques

sphériques



https://fr.wikipedia.org/wiki/Atome_d'hydrogène
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https://fr.wikipedia.org/wiki/Harmonique_sphérique

Adrien-Marie
Legendre

210 CHAPITRE 1}. MECANIQUE QUANTIQUE

de Popérateur moment cinétique (14.126) dans les équations aux valeurs propres (14.170),
celles-ci deviennent,

h2<1 5<smef’>+ ! 82)n,mi(w)—h2€<£+1m,m@<e,¢>

: an w20 Ah2
asm@ 00 00 sin® 60 0¢ (14.175)
—ih % }/z’me (0, ¢) = hmé }/E,me (97 d))

On peut montrer que les harmoniques sphériques qui satisfont les équations aux valeurs
propres (14.175) s’écrivent,

— | i
20+1) (£ me); P (cos ) ¢imed (14.176)

Yo, (0,6) = (—1)™ \/( I ((rmy)

ot les fonctions P,™ (cos @) sont les polynomes associés de Legendre exprimés en termes des
polynomes de Legendre Py (cosf) comme,

P (z) = (-1)" (1 — 2?)

Py (x) ol x = cosf (14.177)

et les polynémes de Legendre P, () sont définis comme,

1 df ¢

Py (z) = 2001 Tt (x—1) ol x = cosf (14.178)

14.3.3 Orbitales atomiques

La fonction d’onde propre ¥y, ¢.m, (7,0,¢) € C de Pélectron de l'atome d’hydrogene est
la représentation en coordonnées sphériques du vecteur d’état |n, £, mg) = ¥y em, € H de
I’électron :

wn,é,mg (7'30345) = (r,9,¢|n, Ea ml> (14179)

Le vecteur d’état |n, ¢, me) = ¥p ¢m, décrit les orbitales sur lesquelles peuvent se trouver
I’électron. Le niveau d’énergie, ou la couche électronique est décrit par le nombre quantique
principal n, le type d’orbitale est décrit par le nombre quantique azimutal ¢ et ’orientation
de l'orbitale est décrite par le nombre magnétique my. Les orbitales sont classées pour les
trois premiers niveaux d’énergie (Tab. 14.1) et illustrées (Fig. 14.6).

TABLE 14.1 Classifications des orbitales en termes des nombres quantiques

Principal n | Azimutal ¢ | Magnétique m, | Type
1 0 0 S
2 0 0 S
2 1 -1,0,1 p
3 0 0 S
3 1 1,0,1 p
3 2 -2,-1,0,1,2 d

14.3.4 Effet Zeeman

En physique classique, le vecteur moment dipolaire magnétique p, d'un électron est le
produit du courant électrique I généré par le mouvement de 1’électron sur son orbite et du
vecteur aire A de l'orbite de Bohr orienté orthogonalement & 1’orbite selon la régle de la main
droite. Compte tenu du moment cinétique (14.113), le moment magnétique d’un électron
sur une orbite horizontale s’écrit au premier ordre comme,

e

rXp=—

ue:IA:—eA:—Erxv:—

L 14.1
2 2m. ( 80)

2me
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nombre azimutal

[2,1,-1) [2,1,0) [2,1,1)

nombre
=0 / magnétique
Etats s |1,g,0> by |n, £, myp)
|37 0, 0> nombre principal

(=1 i
Etats p E
8 :
&% o )] |
i
i

3,1,-1) 3,1, 0) [3,1,1)

{=2

Brata d Cf o« 4

3,2, 2) 3,2,-1) |320) |321> |322>

FIGURE 14.6 Orbitales de I’électron de ’atome d’hydrogene décrites par le vecteur d’état
[n, €, my).

L’énergie potentielle d’interaction entre le moment dipolaire magnétique de 1’électrique p,
et un champ magnétique extérieur vertical B = B 2 s’écrit,

e eB
Eint = — .B = -B=—1, 14.181
t He 2me 2me ( )

D’apreés le principe de correspondance, afin d’effectuer la transition de la mécanique classique
vers la mécanique quantique, on peut remplacer 1’énergie d’interaction E par 'opérateur
hamiltonien d’interaction H et la composante verticale du moment cinétique L, par la
composante verticale de 'opérateur moment cinétique,

BEing = Hiy et L. — L, (14.182)

Ainsi, ’hamiltonien d’interaction entre le moment magnétique de 1’électron et le champ
magnétique extérieur s’écrit,

N B
Hint = c

L. (14.183)

2me

A présent, on considere l'interaction de 1’électron d’un atome d’hydrogene avec un champ
magnétique extérieur vertical. Comme I’hamiltonien d’interaction Hiy est un multiple de
Popérateur L., alors compte tenu de la relation de commutation (14.166), I'hamiltonien
d’interaction (14.183) commute avec I’hamiltonien libre (14.160),

[Hin, Ho) = 0 (14.184)

ot Hy est Ihamiltonien libre. Ainsi, 'hamiltonien d’interaction préserve PTECOC de atome
d’hydrogene libre |n, ¢, mg). L’équation aux valeurs propres pour 'hamiltonien total H =
HO + Hint S’éCI‘it,

Hn,t,mg) = Ep o, |0, €,my) (14.185)
ou I’énergie totale est I, ,,, = E, + Fint. De maniére équivalente, cette équation est,
(ﬁo + ﬁim) In,€,me) = (En + Eing) |0, €, me) (14.186)

Compte tenu des équations aux valeurs propres pour '’hamiltonien (14.171) et pour la com-
posante verticale de Popérateur moment cinétique (14.142), et de ’hamiltonien d’interac-
tion (14.183), on obtient,

A h
Hing |0, €,me) = )= fn me B |n, €, my) (14.187)
e
ou I’énergie d’interaction s’écrit,
|
Einy = — my B =—ugmy B (14.188)

2me.



Pieter Zeeman

Effet Zeeman normal

George Uhlenbeck

212 CHAPITRE 1}. MECANIQUE QUANTIQUE

ou up est le magnétron de Bohr défini comme,
el
2me,

g = (14.189)

Ainsi, compte tenu des niveaux d’énergie de 'atome d’hydrogene libre (14.174), en présence
d’un champ magnétique extérieur, il y a une séparation des niveaux d’énergie E, en sous-
niveaux distincts pour des nombres magnétiques my différents,

Epm, =— % — upmy B (14.190)
Ce processus de séparation des niveaux d’énergie sous 'effet d’'un champ magnétique s’ap-
pelle I'effet Zeeman normal. Le nombre 2¢+1 de sous-niveaux est impair. Expérimentalement,
on observe que le nombre de sous-niveaux est pair. En particulier, pour les orbitales de type
s pour lesquelles ¢ = 0, on observe deux sous-niveaux ce qui est contraire a l'effet Zeeman
normal. Pour remédier, Wolfgang Pauli postule en 1924 I’existence d’une nombre quantique
supplémentaire qui peut prendre que deux valeurs.

14.3.5 Spin

En 1925, George Uhlenbeck et Samuel Goudsmit qui étaient postdoctorant et docto-
rant dans le laboratoire de Paul Ehrenfest a Leiden proposent que ce nombre quantique
supplémentaire est di & I’existence d’'un moment cinétique intrinseque S de 1’électron qu’ils
ont appelé le spin. Uhlenbeck a ensuite réalisé que la vitesse tangentielle due a la rotation
propre de I’électron sur lui-méme correspondant au spin serait supérieure a la vitesse de pro-
pagation de le lumiere dans le vide c. Il a donc demandé a Paul Ehrenfest de ne pas publier
I’article sur le spin de I’électron en argumentant que “I’hypotheése du spin n’est pas physique
est ne devrait pas étre publiée”. Ehrenfest lui a rétorqué : “J’ai déja soumis l'article en vue
de sa publication. Il sera publié dans deux semaines”. Puis, il a ajouté : “Vous étes tous les
deux jeunes et pouvez vous permettre de faire quelque chose de stupide.” Pas si stupide que
cela en fin de compte, heureusement qu’Ehrenfest a persisté... Afin de tenir compte du spin
S de I’électron, le moment cinétique orbital L de 1’électron doit donc étre remplacé par le
moment cinétique total,

J=L+S (14.191)

Par conséquent, le moment magnétique de I’électron (14.180) devient,

e
He= =g J = 2me (L+8) (14.192)

et I’énergie d’interaction devient,
eB

€

Eii=—p, B= 2; (L+S)-B=—"(L.+85.) (14.193)

D’apres le principe de correspondance, afin d’effectuer la transition de la mécanique classique
vers la mécanique quantique, on peut remplacer ’énergie d’interaction E par l'opérateur
hamiltonien d’interaction H et la composante verticale du moment cinétique L, par la
composante verticale de 'opérateur moment cinétique,

Ein = Hne e L.—L. e S,—28. (14.194)

Ainsi, 'hamiltonien d’interaction entre le moment magnétique de I’électron et le champ
magnétique extérieur s’écrit,

N eB o N
Hint = 2 (Lz + Sz) (14195)
e
Par analogie avec les équations aux valeurs propres (14.142) et (14.149) pour les opérateurs
moment cinétique orbital au carré L? et moment cinétique orbital vertical Lz, Uhlenbeck et
Goudsmit font ’hypothese raisonnable que I'opérateur de spin au carré 52 et lopérateur de
spin vertical S, satisfont les équations aux valeur propres suivantes,

§2|S,ms> = h%s(s+1) s, my)

] (14.196)
S.ls,ms) = hmg |s,mg)
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ol s est le nombre quantique de spin et mg est le nombre quantique magnétique de spin.
Par analogie avec le moment cinétique orbital (14.147), le spin s et le spin magnétique my
satisfont 'inéquation suivante,

—s<mg<s (14.197)

Les opérateurs de spin au carré 52 et de spin vertical S. commutent entre eux et avec
I’Hamiltonien total H,

[H,8%]=0 et [HS]=0 e [9,5]=0 (14.198)
Ainsi, 'hamiltonien d’interaction (14.195) commute avec 'hamiltonien libre (14.160),
[Hine, Ho) = 0 (14.199)

Afin de tenir compte du spin, 'ECOC de 'atome d’hydrogene doit étre élargi afin d’inclure
I’'opérateur de spin au carré 52 et la composante verticale de I'opérateur de spin S.. Ainsi,
I'ECOC est le suivant : {fI,ﬁQ, IA% 5'27 S'Z} Les vecteurs propres de cet ECOC, sont alors
déterminés par cinq nombres quantiques : le nombre principal n, le nombre azimutal ¢, le
nombre magnétique my, le spin s, le spin magnétique m. Ces vecteurs appartenant a I’espace
de Hilbert H s’écrivent,

[n, €, mg, s,ms) = |n,£,mg) @ |s, ms, ) (14.200)

ol |n,?,my) est le vecteur d’état de la partie orbitale et |s,mg) est le vecteur d’état de
spin et le symbole ® représente le produit tensoriel entre ces vecteurs. En présence du spin,
I’équation aux valeurs propres pour ’hamiltonien total H = Hy + Hiy de 1’électron s’écrit,

H|n7 omyg, $,ms) = Epomym, |1 €, M0, 8, M) (14.201)

ou I’énergie totale est I, p, m, = En + Ein. De maniere équivalente, cette équation est,
(ﬁo + ﬁint> [n, €, me, s,ms) = (Ep, + Eint) |0, £, mg, s,m4) (14.202)

Compte tenu des équations aux valeurs propres pour I'hamiltonien (14.201), pour les com-
posantes verticales de l'opérateur moment cinétique orbital (14.142) et de l'opérateur de
spin (14.196), et de ’hamiltonien d’interaction (14.195), on obtient,

. B /. N h
Hint |n7£vmf,8,ms> = ¢ (Lz+Sz> |na‘€7mlvsvms> - ¢ (m5+ms)B|na‘€vmlvsvms>
2me 2me
(14.203)
ou I’énergie d’interaction s’écrit,
Eint = —upmy B (14204)

Ainsi, compte tenu des niveaux d’énergie de 'atome d’hydrogene libre (14.174), en présence
d’un champ magnétique extérieur, il y a une séparation des niveaux d’énergie F, en sous-
niveaux distincts pour des nombres magnétiques my et des nombres magnétiques de spin m
différents,

Er
=— 5 HB (m¢ +mg) B (14.205)

En,m(,ms
Afin de rendre compte de l'observation de 'effet anormal de Zeeman avec un nombre pair

de sous-niveaux, compte tenu de l'inégalité (14.206), le nombre magnétique de spin pour
I’électron peut donc prendre uniquement deux valeurs qui different d’une unité,

11 1
ms € {— 2 2} ainsi s=3 (14.206)

On montrera que 1’électron est un fermion de spin s = 1/2.

Paul Ehrenfest
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14.3.6 Matrices de Pauli

Il y a donc deux vecteurs d’état propres |s, ms) pour le spin de I’électron : le vecteur “spin
up” et le vecteur “spin down”,

11 1 1
=|=, = =|=,—= 14.2
1) ‘2,2> e |4) '2, ;) (14.207)
qui forment une base de I’espace de Hilbert de la partie spin Hg = C2. Dans la base

orthonormée {| 1 ),| ] )}, les vecteurs propres s’écrivent en composantes comme,

|T>=(é> et |¢>:<(1)) (14.208)

Les opérateurs de spin S, € £ (c?), S, eL (C?) et S.er (C?) sont représentés par dans
I’espace de Hilbert par des matrices 2 x 2 a coefficients complexes. Les équations aux valeurs
propres m, = +h/2 pour lopérateur de spin vertical S, s’écrivent,

811y =211)
§z|\l/>:77|¢>

(14.209)

N | St

Ainsi, dans la base orthonormée { |1 ),|| )}, Popérateur de spin vertical S, est représenté

par la matrice diagonale,
A h
S.=1 ((1) 01) (14.210)

Par analogie avec les relations de commutation (14.131) entre les composantes cartésiennes
de l'opérateur moment cinétique, les composantes cartésiennes de I'opérateur de spin satis-
font les relations de commutation,

[Se,8,)=ihS. et [S,,S.]=ihS, et [S.,S8.]=ihb, (14.211)
Les opérateurs d’échelle pour le spin sont définis comme,
S, =8,+iS, e S =8,-1i8, (14.212)

Compte tenu des relations de commutation (14.211) et des opérateurs d’échelle (14.216), on
obtient les relations de commutation suivantes,

(62,84] = 80, 8] + 1182, 8, = i h Sy + h& = h S,

T O ) ; : ) 14.213
9., 8] =15.,8,] — i[S.. S, ] =ih8, — hSy = —hS_ ( )

Par analogie avec les opérateurs d’échelle du moment cinétique orbital, 'opérateur de spin
Sy envoie le vecteur “spin down” sur le vecteur “spin up” et vice versa pour 'opérateur de
spin S_,
Selby=hl1)
S-[1)=nhl])

Ainsi, dans la base orthonormée { | 1 ),| | )}, les opérateurs d’échelle pour le spin S et S_

(14.214)

sont représentés par les matrices,

A 0 1 A 0 0
san(® ) w san(®) aaz

Les opérateurs de spin S, et gy peuvent étre écrit en termes des opérateurs d’échelle SUF et
S_ en inversant les relations (14.216),

g, = % (5, +48) a8 = _%’ (8. - 5) (14.216)

Ainsi,compte tenu des opérateurs d’échelle pour le spin (14.216) et des relations (14.216),
les opérateurs de spin horizontaux S, et S, sont représentés dans la base orthonormée
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{I1),]4)} par les matrices sans trace,

N h (0 1 A h (0 —i

Pour décrire ’opérateur de spin des électrons de nombre quantique de spin s = 1/2; il est utile
d’introduire des opérateurs sans dimension physique associés aux composantes cartésiennes
de lopérateur de spin et définis de la maniere suivante,

h
2

h Oy et S, =

| St

Oy et S

6. (14.218)

Compte tenu des opérateurs de spin (14.210) et (14.217), les opérateurs 6, 6, et 6. sont
représentés par des matrices 2 x 2 appelées les matrices de Pauli,

. (01 . (0 —i . (1 0
O’w—(l 0) et Uy_(i 0) et 0'Z—<0 _1> (14.219)

A Taide des opérateurs de spin (14.218) et de leurs relations de commutation (14.211) on
obtient les relations de commutation entre les matrices de Pauli 6, 6, et 6.,

(62,6, =206, et  [6,,6:]=2i6, et [6.,64)=2i6, (14.220)

La relation de commutation générale entre les matrices de Pauli, compte tenu des identifi-
cations des indices x = 1, y = 2 et z = 3, est la suivante,

[5'2',53} = 6 6']' — &j 0; = 2i€ijk Ok ou i,j,k € {1,2,3} (14221)

et €55 sont les composantes completement antisymétriques du tenseur de rang 3 de Levi-
Civita avec €123 = 1. Les matrices de Pauli au carré s’écrivent,

(0 1\ /0 1)} (1 O _q
B o/\1 0/ \o 1)
0 —i\ /0 —1 10 -
A2 _ _ _
G (U )9 (aamy
2 (1 0 1 0\ (1 0\
Uz_(o 1)l 1)\ 1)1
Elles satisfont les identités suivantes,
5 6 466 — 0 1\ /0 —q n 0 —2
Ty TYEE L 0 \i 0 i 0
A ~ .~ (0 =i\ /1 O 10 0 -7y (0 O
0y02+0z0y—<, O)(O _1>+<0 1 (z O)—(O O) (14.223)
0 0 1 n 0 1\/1 0\ (0 O
-1/ \1 0 1 0)\o -1/ \0o 0

Au vu des identités (14.222) et (14.223), la relation d’anticommutation générale entre les
matrices de Pauli s’écrit,

—_

~

—_

a-za-z'i_a'a:a-z:(

o

{64,6)} =6:6;+6;6,=26;1  ou  i,5€{1,2,3} (14.224)

La moyenne arithmétique des relations de commutation (14.224) et d’anticommuta-
tion (14.224) s’écrit,

1 N
0;05 = 5([6’2‘,5’]']4-{5'1',5']'}) =0;; L+ ici, 0% ou i,5,k € {1,2,3} (14.225)

Les matrices de Pauli o, o, et 0, forment une base de 'algebre su (2) du groupe de Lie

SU (2).
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14.3.7 Principe d’exclusion

L’hamiltonien d’un systeme de deux particules indiscernables, comme deux électrons par
exemple, est invariant par permutation des particules. Cela se traduit par le fait que 1’ha-
miltonien H commute avec I'opérateur de permutation des particules Pis,

[H, P1o) =0 (14.226)

Le carré de 'opérateur de permutation est 'opérateur identité,

PL=1 (14.227)
Ainsi, le spectre de 'opérateur de permutation ]512, qui est ’ensemble de ses valeurs propres,
s’écrit,
o (1512) = {-1,1} (14.228)
L’équation aux valeurs propres pour 'opérateur de permutation agissant sur le vecteur d’état
|x1, z2) du systéme est,
plg |LB1,IL’2> = \xg,:c1> =+ |£L'1, (E2> (14229)
ou x1 = {nqy, €1, my,, 1, ms, } représente 'ensemble des nombres quantiques de la premiére
particule et zo = {ng, o, my,, S2, M, } représente 'ensemble des nombres quantiques de la
deuxieme particule. En mécanique quantique, les particules identiques sont indiscernables et

classées en deux familles définies par les valeurs propres £ 1 de 'opérateur de permutation
Pi5. Les particules dont le vecteur d’état est symétrique par permutation sont des bosons,

T2, 21) = |1, T2) (14.230)

Les bosons sont des particules d’échange comme le photon dont le spin s est entier. Les
particules dont le vecteur d’état est antisymétrique par permutation sont des fermions,

|22, 21) = — |21, 22) (14.231)

Les fermions sont des particules comme 1’électron et le proton dont le spin s est demi-entier.
Comme le vecteur d’état (14.231) du systeme formé de deux fermions est antisymétrique
par permutation, il a la forme suivante,

|71, 22) = %Oxlh ® |r2)2 — |r2)1 ® |x1>2) (14.232)

ou le symbole ® représente le produit tensoriel entre les vecteurs d’état |x1)1 et |x2)1 ap-
partenant a l'espace de Hilbert 7, des états de la premiere particule et les vecteurs d’état
|z1)2 et |z2)2 appartenant a 'espace de Hilbert Ho des états de la deuxiéme particule. Si les
deux fermions sont dans le méme état quantique, ils ont les mémes nombres quantiques,

T1 = Ty ainsi |z1)1 = |z2)1 et |x1)2 = |z2)2 (14.233)

alors le vecteur d’état du systéme (14.232) s’annule,
|z1, x2) = |z, 2) =0 si T =Ty =21 (14.234)
Cela signifie que la probabilité (14.57) de mesurer deux fermions dans le méme état est nulle,
p(z,x) = [(z,z[x, 22)* = 0 (14.235)

On obtient ainsi le principe d’exclusion que Wolfgang Pauli a énoncé en 1925. Ce principe
stipule que deux fermions ne peuvent jamais étre observés dans le méme état quantique.

14.3.8 Tableau périodique des éléments

Le premier tableau périodique de classification des atomes a été réalisé par le chimiste
Dimitri Mendeleiev en 1869. Ce tableau était différent de celui qu’on utilise aujourd’hui
mais similaire dans son principe. L’intérét d’'un tel tableau était non seulement de clas-
sifier systématiquement les atomes en fonction de leur périodicité mais aussi d’identifier
des atomes encore inconnus et de prédire certaines de leurs propriétés. Pour un atome de
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numéro atomique Z, c’est-a-dire un atome dont le noyau est formé de Z protons, I’hamilto-
nien libre (14.160) d’un électron interagissant avec le noyau devient,

N H2 L2 1 Ze? .
Hy = pr+ 293

—_ 14.236
2m.  2mer?  4dmey T ( )

Le classement des atomes dans le tableau périodiques des éléments se fait d’abord par
ordre de numéro atomique Z croissant (Fig 14.7). Quatre nombres quantiques définissent
I’agencement de ce tableau. Premierement, le nombre principal n détermine la couche ato-
mique et correspond a une ligne du tableau. Deuxiémement, le nombre quantique azimutal
£ détermine la sous-couche atomique, c’est-a-dire le type d’orbitale, et correspond & un bloc
du tableau. Troisiemement, le nombre quantique magnétique orbital m, détermine ’orbi-
tale dans une sous-couche. Quatriemement, le nombre quantique magnétique de spin mg
détermine 1’électron sur une orbitale.

™
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FIGURE 14.7 Tableau périodique des éléments. Les orbitales sont classées par blocs de
couleur : le bloc s en bleu, le bloc p en vert, le bloc d en rose et le bloc f en orange.

Les atomes qui contiennent n > 5 couches atomiques ne sont pas stables et ne figurent
donc pas dans ce tableau. Les quatre blocs de couleur différente (Fig 14.7) correspondent
aux orbitales de type s ou £ = 0, de type p ou £ = 1, de type d ou £ = 2, de type f ou
¢ = 3. Compte tenu I'inégalité (14.147), il y a des orbitales p que pour les couches atomiques
n = 2,3,4, des orbitales d que pour les couches atomiques n = 3,4 et des orbitales f que
pour la couche atomique n = 4. Au vu de l'inégalité (14.167), il y a 1 orbitale de type
s, 3 orbitales de type p, 5 orbitales de type d et 7 orbitales de type f sur une couche
atomique n donnée. En vertu du principe d’exclusion de Pauli, il y a deux électrons sur
chaque orbitale atomique : un électron “spin-up” 1 et un “électron “spin-down” | afin de
garantir que leur état quantique soit différent. Finalement, I’ordre des colonnes correspond
au nombre d’électrons présents sur la couche atomique n correspondant a la ligne (Fig 14.7).
Les abréviations des types d’orbitales ont été introduites par Rydberg : s pour “sharp”, p
pour “principal”, d pour “diffuse” et f pour “fundamental”.

14.4 Information quantique

14.4.1 Processus de mesure

Le spin des électrons a été mis en évidence en 1922 par une célebre expérience réalisée par
Otto Stern et Walther Gerlach pour laquelle ils ont regu le prix Nobel de physique en 1943.
Dans cette expérience, un faisceau d’atomes d’argent est envoyé dans un appareil qui génere
un champ magnétique vertical B = B 2 inhomogene (Fig. 14.8). En physique classique, la
déviation des atomes d’argent est due & la force magnétique verticale générée par le champ

Dimitri Mendelelev
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magnétique inhomogene vertical dans I’entrefer de ’aimant,

0

F, = (ue o ) 2 (14.237)

En physique classique, on devrait donc observer une tache continue verticale due a l’action
de la force magnétique verticale sur le moment magnétique p, des électrons des atomes
d’argent. Or, 'expérience révele deux taches distinctes de taille égale sur un écran. Pour en
rendre compte, au vu des expressions (14.180) et (14.192) du moment cinétique de I’électron,
il est donc nécessaire d’introduire un moment cinétique intrinseque S, le spin, qui donne lieu
a un moment magnétique g, non-nul méme en absence de moment cinétique orbital L.

Observateur —

| Faisceau d'électrons

[ [
_L el

=

Source d'électrons

Aimants créanf entre eux
Ecran de détecfion un champ magnétique
inhomogene

FIGURE 14.8 Des atomes d’argent pénetrent dans I'appareil de Stern-Gerlach qui génere
un champ magnétique inhomogene. Ils sont déviés verticalement est forment deux taches
de taille égale sur un écran.

L’expérience de Stern-Gerlach (Fig. 14.8) révele que lors du processus de mesure, le nombre
quantique magnétique de spin mg ne peut prendre que deux valeurs : ms = 1/2 pour le “spin
up” 1 et my = —1/2 pour le “spin down” | . Dans le cadre de la mécanique quantique, on
peut donc comprendre cette expérience de la maniere suivante : initialement, lorsque le
faisceau d’atomes d’argent est émis par la source, I’état quantique |¢)) de chaque atome est
une superposition — c’est-a-dire une combinaison linéaire normée — des états propres “spin
up” | 1) et “spin down” || ),

1
lv) = Wi (I e ¢>) (14.238)

Le processus de mesure consiste ensuite a faire pénétrer les électrons dans l'appareil de
Stern-Gerlach qui génére champ magnétique vertical B = B 2 inhomogene. Les électrons
avec un “spin up” sont déviés vers le haut et les électrons avec un “spin down” sont déviés
vers le bas. Comme les taches sont de taille égale, la probabilité que le spin soit observé
dans les états propres | 1) et | | ) doit étre égale. La mécanique nous permet de le vérifier.
Ces états propres forment une base orthonormée de l’espace vectoriel C? associée au spin
des électrons,

(tI1)y=1 e (LlL)=1 et (T[L)=(L[1)=0 (14.239)

Compte tenu des conditions d’orthonormalité, on calcule donc les probabilités d’observer les
états propre de spin laide de la formule (14.57),

=l =2 [ InE 0] =2

. =1 =0 . (14.240)
p=lHP =5 | InEEIN] =5

—— ==

=0 =1
comme pour 'expérience du chat de Schrodinger. L’interprétation du processus de mesure
du spin dans lexpérience de Stern-Gerlach est donc la suivante : en faisant une mesure du
spin, on a une probabilité 1/2 d’observer un spin up ou un spin down. Cette expérience
montre que le résultat d’un processus de mesure en physique quantique est probabiliste.


https://fr.wikipedia.org/wiki/Otto_Stern
https://fr.wikipedia.org/wiki/Walther_Gerlach

14.4. INFORMATION QUANTIQUE 219
14.4.2 Qubit

Les photons ont deux états propres de polarisation comme le spin des électrons. Ces deux
états propres, notés |0) et | 1), foment une base orthonormée de ’espace de Hilbert C2,

(0]0y=1 et (1]1)=1 et (0[]1)=(1]0)=0 (14.241)

Les états propres |0) et |1) se comportent comme des “bits” en théorie de l'information
classique. Leur équivalent quantique est un état de superposition des états propres |0) et
[1) de la forme,

[Y) =a|0)+6]1) (14.242)
ou a, B € C satisfont la condition de normalisation du vecteur | ),
cat+ B B=af+B2P=1 ansi |*P=1 (14.243)

Le fait de multiplier un vecteur propre par un nombre quantique de norme unité e*® ne
change pas 1’état physique d’un systéme. On peut choisir de prendre o € R, Alors, I'état de
superposition quantique qui encode I'information quantique, aussi appelé un “qubit” s’écrit,

|) = cos (Z) |0) + € sin (g) [1) (14.244)

oul0 <l <met 0< ¢ <27 Les angles 0 et ¢ déterminent de maniere unique les points
(x,9y,2) qui se trouvent sur la sphére S? de rayon unité,

T =sinf cos ¢ et y = sinf cos ¢ et z = cosf (14.245)

La sphere définie par 'ensemble des qubits (14.244) pour 8 € [0, 7] et ¢ € [0, 27) s’appelle
la sphére de Bloch (Fig. 14.9). Felix Bloch a regu le prix Nobel de physique en 1952 pour
ses travaux sur la résonance magnétique nucléaire.

10)

1)

FIGURE 14.9 Les qubits | ) se trouvent sur la sphére de Bloch de péle nord |0) et de
pole sud |1).

14.4.3 Ordinateur quantique

En mécanique classique, en faisant circuler une séquence donnée de photons d’état de
polarisation |0) ou | 1), qui forment une base binaire, c¢’est-a-dire des bits, on peut générer
un code binaire. On peut le faire, par exemple, sous la forme d’un octet classique, qui est
un ensemble de huit bits du type 01110010. En mécanique quantique, en faisant circuler une
séquence donnée de photons d’état de superposition de polarisation | ), qui représente une
base infinie, c’est-a-dire des qubits, on peut générer un code en état de superposition. On
peut le faire, par exemple, sous la forme d’un octet quantique, qui est un ensemble de huit
qubits du type ¥ ¥231405061710s. Vu que chaque qubit est un état de superposition d’une
base de taille infinie, cela permet de faire un tres grand nombre de calculs en parallele dont
les perspectives sont tres intéressantes.

Etant donné que le processus de mesure en mécanique quantique est une projection
irréversible dans l’espace de Hilbert, la lecture d’'un code modifie I'information contenue

Felix Bloch

Ordinateur classique

Ordinateur quantique
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dans le code due au processus de mesure des qubits |1)) qui les contraint & étre dans un
état propre : |0) ou |1). Il n’est donc plus possible d’espionner impunément un code. De
plus, en le faisant on perd l’essentiel de 'information contenue dans le code. L’ordinateur
quantique est donc le nec le plus ultra en termes de cryptographie : c’est en quelque sorte
le paradis pour les banquiers et ’enfer pour les hackers. Il n’est donc pas étonnant que le
développement de ces technologies soit suivi de pres par la place financiere helvétique.

La réalisation pratique d’un ordinateur quantique présente des défis importants. Il faut
par exemple refroidir ses composants a une température 7'~ 0.01 K voisine du zéro absolu.
Le smartphone basé sur un ordinateur quantique n’est donc pas encore pour demain ...

14.4.4 Paradoxe EPR

La mécanique quantique prédit l'existence d’un phénomene étrange : deux particules
peuvent avoir des états quantiques qui dépendent 'un de 'autre quelle que soit la distance
qui les sépare. Les états qui ont cette particularité sont des états intriqués ou enchevétrés.
La spécificité de ces états est qu’il existe des corrélations entre les propriétés physiques de
ces particules. En d’autres termes, le résultat d’une mesure effectuée sur la premiere parti-
cule peut déterminer entierement le résultat de la méme mesure effectuée sur la deuxieme
particule quelque soit le résultat de la premiere mesure. Ce comportement étrange est le
paradoxe EPR qui est 'acronyme d’Einstein, Podolsky et Rosen, les trois physiciens qui ont
discuté les propriétés de ces états intriqués dans un article publié en 1935 afin de démontrer
le caractere incomplet de la mécanique quantique.

FEinstein n’a jamais cru en l'existence de cette “action fantéme a distance”. Ce paradoxe a
suscité une vive polémique entre Einstein et Bohr. Cependant, apres leur mort, I'intrication
a été largement vérifiée sur le plan expérimental. Elle est au centre des discussions philoso-
phiques sur l'interprétation de la mécanique quantique. Les expériences semblent remettre
en cause soit la causalité, soit la localité, soit le réalisme de la localité de la physique. Ceci
dépend toutefois de l'interprétation choisie pour la mécanique quantique.

14.4.5 Intrication quantique

Avant de décrire mathématiquement les états intriqués, il est nécessaire d’introduire la
définition des états séparables. Deux particules sont dans un état séparable si leur vecteur
d’état | U149 ) peut étre exprimé comme le produit tensoriel des états de superposition |1 )1
et |12 )2 des deux particules,

| Wii2) =[9¥1)1® [2)2 (14.246)
avec

|1 )i = cos (05) |0); + e sin (i’) [1); ol i=1,2 (14.247)

Les états non séparables sont les états intriqués. Les quatre états d’intrication maximale
d’un systeme constitué de deux photons dans I’espace de Hilbert C2 @ C? sont appelés les
états de Bell,

[2%) = o= (Joh @0 1o
‘/1§< 1 : 2) (14.248)
w5 = s (loh el 21 @]0))

Ils forment une base orthonormée des états intriqués a deux photons ou les états propres de
chaque photon satisfont les conditions d’orthonormalité,

(0]0); =1 et (1]1);=1 et (0|1);=(1[0);=0 ou =12 (14.249)

Les états intriqués peuvent étre utilisés pour la téléportation d’information quantique.
Compte tenu de la formule (14.57), la probabilité d’avoir deux photons de méme polari-
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sation lorsqu’ils sont dans des états intriqués de Bell | ®*) est,

pax (0,0) =] ((0]y ® (0]) | ®*)[? :%|<0|0>1<0|0>2i<0|1>1<0|1>2\2 =

pas (L) = [ (1h @ (1)) |85 =

La probabilité d’avoir deux photons de polarisation opposée lorsqu’ils sont dans des états
intriqués de Bell | ®*) est,

(14.250)

DN = N =

[(1]0)1(1]0)a £ (1] 1)1 (1[1)sf* =

pax (0,1) = [ ({0 @ (1]2)[@F)]* = 2 [(0]0)1(1]0)2 £ (0[1)1(1]1)2[* =0

(14.251)
pox (1,0) = | ({11 @ (0]2) [@F)]> = 5 [(1]0)1(0]0)2 £ (1[1)1(0[1)y* =0

DN = N =

Compte tenu de la formule (14.57), la probabilité d’avoir deux photons de méme polarisation
lorsqu’ils sont dans des états intriqués de Bell | U ) est,

1
P (0,0) = [ ({01 @ (0]2) | ¥F)[* = 5 1€010)1(0[1)2 £ (0[1)1(0]0)s* =0
1 (14.252)
pus (1,1) = [((1[1 @ (1)) | ¥F)* = 3 (110011 1)2 £ (1] 1)1 (1]0)s* =0
La probabilité d’avoir deux photons de polarisation opposée lorsqu’ils sont dans des états

intriqués de Bell | U+ ) est,

pos (0,1) = [((0[s @ (L[) | U= )P = S [(0]0)1(1[1)2£(0[1)1(1]0)o]* =

1
=3
pas (1,0) = | ({1 {0 ]s) | w5) =

(14.253)
[(1]0)1(0[1)2 4+ (1]1)1(0[0)2f*> =

DN = N =

2
Ces résultats statistiques peuvent étre interprétés clairement. Premierement, si les deux
photons sont dans des états intriqués de Bell @+ ou U+, lorsqu’on mesure leurs états avec
deux détecteurs différents en des endroits différents, 1’état de polarisation propre mesuré
sera |0) ou |1) avec une probabilité de p; (0) = p; (1) = 1/2. Deuxiémement, si les deux
photons sont dans des états intriqués de Bell ®* alors la polarisation mesurée pour chaque
photon sera la méme, alors que si les deux photons sont dans des états intriqués de Bell &+
alors la polarisation mesurée pour chaque photon sera différente. Les expériences de mesure
de photons intriqués ont été réalisées par Alain Aspect a Paris, Anton Zeilinger & Vienne et
John Clauser a Berkeley. Ils ont recu le prix Nobel de physique en 2022 pour leurs travaux.

14.4.6 Interprétations de la mécanique quantique

La correlation a distance entre I’état des photons est pour le moins étrange. Elle semble
contredire soit la causalité, soit la localité, soit le réalisme. Si I’état des photons est mesuré
simultanément alors I'information sur ces photons est corrélée pour qu'’il y ait cohérence
entre leurs états de polarisation. Ceci ne contredit pas la relativité restreinte puisqu’aucun
photon ne s’est déplacé plus vite que la vitesse de la lumiere et qu’il n’y a pas eu échange
d’information entre les photons a une vitesse supérieure a la vitesse de la lumiere. La causalité
est donc saine et sauve! Les deux photons se comportent donc comme les manifestations
d’un seul objet délocalisé dans ’espace. Que dire alors de la localité et du réalisme? Le
réalisme affirme que ’état du systeme est une description de ses propriétés. Si on interprete
la mécanique quantique de maniere réaliste, alors les expériences sur U'intrication de photons
montrent que la physique est non-locale puisque ces propriétés apparaissent a distance durant
les processus de mesure ayant lieu au sein des détecteurs. En revanche, si I’état d’un systeme
correspond a l'information qu’on possede sur ce systeme, alors cette information dépend du
référentiel ou elle est observée. En particulier, le concept de simultanéité est spécifique au
référentiel. Ainsi, pour comparer simultanément ces informations, il faut le faire de maniere
causale par rapport a un référentiel tiers. Cette conclusion ne contredit donc pas la localité,
mais elle se fait aux dépens du réalisme cher & Albert Einstein...

Dans une célebre expérience, réalisée par Nicolas Gisin a Geneve en 1997, deux photons
intriqués ont été envoyés de la gare de Cornavin a Bellevue et Bernex respectivement en
empruntant le réseau de fibre optique de Swisscom (anciennement PTT). Les détections
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ont pu se faire de maniére quasiment simultanée. De maniéere concrete, la vitesse a laquelle
Pinformation devrait étre transmise entre ces deux mesures est 10’000 fois supérieure a
la vitesse de propagation de la lumiere dans le vide. Les résultats de ce expériences sont
conformes a celles d’Aspect, Zeilinger et Clauser.

14.4.7 Epilogue

En guise d’épilogue, je vous propose de faire un petit calcul révélateur. On va démontrer
que le concept d’orbite circulaire de I’électron dans le modele de Bohr est incohérent car
une telle orbite donnerait paradoxalement lieu a un mouvement en spirale de 1’électron qui
terminerait sa course en entrant en collision avec le noyau fixe (Fig. 14.4). La raison de cette
incohérence est due au fait que les lois de 1’électromagnétisme prédisent qu’un électron de
charge électrique e sur une orbite circulaire de rayon r ayant une vitesse v et une accélération
centripéte a, émet un rayonnement dont la puissance P est donné par la formule de Larmor,

2 e? 9 e ot

_2 2= v 14.254
3 4megcd “ 6megc® 12 ( )

A Taide de I’équation du mouvement de I’électron d’un atome d’hydrogene (14.9) sur une
orbite circulaire, on obtient la vitesse scalaire,

1 e2

dmeg mer

v = (14.255)

et la puissance rayonnée (14.254) devient,

< ( LG >2 (14.256)

6megcd \ dmeg mer?

En substituant la vitesse dans I’énergie de I’électron d’un atome d’hydrogene (14.158), elle
se réduit a,
9 1 €2 1 €2

1
E=- — —=— — 14.257
g Me? dmeg 7 8meg T ( )

La dérivée temporelle de I’énergie (14.257) s’écrit,

e r
= 8??0 ) (14.258)

La puissance rayonnée est 'opposé de la dérivée temporelle de 1’énergie de 1’électron,
P=-F (14.259)

En substituant la puissance (14.256) et la dérivée temporelle de 1’énergie (14.257) dans
lidentité (14.259), on obitent la dérivée temporelle du rayon,
dr et 1
L_dr _ 1+ 14.260
T 1272e2 m2c® r? ( )
ce qui implique que,
3

2.2,.2
_ LR27fegmege

dt = ridr (14.261)

4
e
On obtient le temps de vol ¢ de 1’électron en intégrant l'intervalle de temps infinitésimal dt’
du temps initial au temps ¢, c’est-a-dire du rayon initial de Bohr ag au rayon nul,

0
t:/t dt/:_%w/ 2qy — Amregmeca (14.262)
0 a

4 4
€ o €

Compte tenu du rayon de Bohr (14.15), la valeur numérique du temps vol est,
43147 -8.85%2-10721.9.112 . 10792 . 3% . 1827 5.29% . 10~
B 1.604 - 10-76

ce qui est beaucoup trop court pour un atome stable!

t

s=1.56-10"""s (14.263)
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